;*******************************************************************
;scale_hex2dec
; The purpose of this routine is to scale a hexadecimal byte to a
;decimal byte. In other words, if 'h' is a hexadecimal byte then
;the scaled decimal equivalent 'd' is:
; d = h * 100/256.
;Note that this can be simplified:
; d = h * 25 / 64 = h * 0x19 / 0x40
;Multiplication and division can be expressed in terms of shift lefts
;and shift rights:
; d = [ (h<<4) + (h<<3) + h ] >> 6
;The program divides the shifting as follows so that carries are
automatically
;taken care of:
; d = (h + (h + (h>>3)) >> 1) >> 2
;
;Inputs: W - should contain 'h', the hexadecimal value to be scaled
;Outputs: W - The scaled hexadecimal value is returned in W
;Memory: temp
;Calls: none
scale_hex2dec
MOVWF temp ;Hex value is in W.
CLRC ;Clear the Carry bit so it doesn't affect RRF
;Nikolai Golovchenko says: For better precision (especially for higher
;values of input byte), one more term should be added, so that
;d = (((h >> 3 + h) >> 3 + h) >> 1 + h) >> 2 = h * (1/4 + 1/8 + 1/64 + 1/512)
;
;This adds only 6 cycles, and reduces errors from 51 to 11 cases per
;all combinations of input (in both routines absolute errors are small,+-1).
;
; RRF temp,F
; CLRC
; RRF temp,F
; CLRC
; RRF temp,F
; ADDWF temp, F
RRF temp,F
CLRC
RRF temp,F
CLRC
RRF temp,F ;temp = h>>3
ADDWF temp,F ;temp = h + (h>>3)
RRF temp,F ;temp = (h + (h>>3)) >> 1
ADDWF temp,F ;temp = h + ((h + (h>>3)) >> 1)
RRF temp,F
CLRC
RRF temp,W ;d = W = (h + (h + (h>>3)) >> 1) >> 2
RETURN