
© 1999 Scenix Semiconductor, Inc. All rights reserved. - 1 -

Scenix™ and the Scenix logo are trademarks of Scenix Semiconductor, Inc.
All other trademarks mentioned in this document are property of their respec-
tive componies.
Application Note 27

Christopher Waters
September 1999
TCP Virtual Peripheral Implementation
1.0 Introduction
This application note describes an implementation of the
Transmission Control Protocol (TCP) for the Scenix SX
microcontroller. TCP is a transport layer protocol from the
TCP/IP network stack. It provides reliable, flow con-
trolled, connection based host-to-host data transfer
across the Internet. TCP is used as the transport layer for
many of the most common Internet protocols, including
HTTP (world-wide-web), SMTP and POP3 (email), Telnet
(host command line interface) and FTP (file transfer).

The next section describes the TCP protocol and special
features of the Scenix SX implementation. This is fol-
lowed by a section describing the TCP API which is used
to write application layer protocols which use the TCP
transport services.

The TCP Virtual PeripheralTM uses the other Scenix
TCP/IP Virtual Peripheral modules described in applica-
tion note AN23 (UDP/PPP Virtual Peripheral Implementa-
tion). AN23 also describes how to configure a Windows

or Linux PC to access the stack over PPP. It should be
read in conjunction with this document to understand the
complete Virtual Peripheral source code.

2.0 The TCP/IP Stack
For a general overview of the TCP/IP protocol stack, see
application note AN23. This application note focuses on
TCP protocol shown in Figure 2-1.

The transmission control protocol (TCP) provides a data
delivery service. It differs from UDP in that it is connec-
tion-oriented and reliable.

2.1 The Transmission Control Protocol (TCP)
TCP is described in the IETF Request for Comments
RFC793. It is a host-to-host transport layer protocol for
the reliable transmission of data over the Internet.

Figure 2-1. The Internet Protocol Stack

SMTP HTTP

UDP TCP

ICMP

IP

PPP Ethernet

Application Layer

Transport Layer

Internet Layer

Network Access Layer
www.scenix.com

TCP Virtual Peripheral Implementation AN27
2.2 Packet Format Overview

The source port is the conceptual network port this seg-
ment originated from. The destination port is the port the
segment is meant for. A unique TCP connection is deter-
mined by the combination of source and destination IP
addresses and source and destination ports. The num-
bering of the destination port is usually used to determine
what application the TCP connection relates to. For
example, SMTP is assigned port number 25 and HTTP is
assigned port 80. So, by convention, an HTTP server will
listen on port 80 for incoming connections.

The sequence number and acknowledgment number are
used by either end of the connection to achieve reliable
data transfer. The sequence number is the number of the
first byte (called octets in the TCP RC) contained within
this segment. The acknowledgment number optionally
contains the next sequence number the sender expects
to receive from the remote host.

The data offset is the number of 32-bit words contained
in the TCP header. It can be used to skip over any
options in the header.

The control bits determine the semantics of the packet:

• URG – This packet contains urgent data and the urgent
pointer field is valid.

• ACK – This packet is an acknowledgment and the ac-
knowledgment field is valid.

• PSH – The data in the packet should be processed im-
mediately, rather than waiting for a full buffer or an
even number of bytes.

• RST – An error has occurred and the connection
should be reset.

• SYN – The packet requests sequence number syn-
chronization.

• FIN – The connection is closing.
More than one control bit can be set at a time indication
multiple conditions.

The window indicates to the remote the number of bytes
the sender is willing to accept. By changing the window
size hosts can perform flow control and minimize
dropped packets due to buffer overruns.

The checksum field contains a checksum over the TCP
header, the TCP data and a pseudo header made up of
fields from the IP header. Computing the checksum is
particularly problematic on a memory limited device and
a later sections covers this in more detail.

The urgent pointer and options are not used by the SX
implementation. TCP has the ability to send out-of-band
data, usually cancel commands to halt the flow of data.

Following the header is the packet data, if any. The data
is not padded and can be an odd number of bytes. The
length of the data is determined by the length field in the
IP header. No translation, such as byte-stuffing for trans-
parency, is performed on the data. This is left to the net-
work access layer protocol.

2.3 TCP Checksum
The checksum field in the TCP header contains the ones
complement of the 16-bit ones complement sum of the
TCP packet with an attached pseudo header. The
pseudo header consists of the source and destination
address, protocol type and length from the IP header.
The checksum is computed over the packet data, but
transmitted in the header, which poses a problem for a
device which doesn’t buffer a packet before transmit.
There are two ways around this problem. The first is to
transmit an arbitrary checksum in the header. As the
packet data is transmitted the real checksum is com-
puted and two extra bytes are appended to the data so
that the checksum in the header is correct. The problem
with this technique is that there is no universal way to tell
the recipient of the packet to ignore the last two bytes of
the packet. These bytes will interfere with most existing
TCP based application protocols.

The alternative, which is the method used in the SX, is to
code the application in such a way that it can generate
the packet data more than once. The application is thus
asked to generate the packet once and the checksum is
computed. This, correct, checksum is transmitted in the
header. Then the application data is computed again and
this time transmitted in the packet. Obviously this tech-
nique imposes some constraints on applications. There

Figure 2-2. TCP Protocol Header

Source port Destination port

Sequence number

0 8 16 24

Acknowledgement number

Offset Reserved Flags Window

Checksum Urgent pointer

Options...

Data...
© 1999 Scenix Semiconductor, Inc. All rights reserved. - 2 - www.scenix.com

AN27 TCP Virtual Peripheral Implementation
are two possible solutions where applications can’t gen-
erate the same data more than once:

• Use spare RAM to buffer packet data before transmit.
• Design a new application level protocol and then used

the byte-stuffing checksum technique.

2.4 Sequence Numbers
Each unique byte transferred over a TCP connection is
uniquely numbered. These are the sequence numbers.
When a connection is initiated each host generates an
(effectively random) initial sequence number ISN). Each
subsequent byte is numbered relative to the ISN. Each
TCP maintains three variables for managing the connec-
tion’s sequence numbers:

• SND.UNA – The oldest unacknowledged sequence
number.

• SND.NXT – The next sequence number to be sent.
• RCV.NXT – The next sequence number to expect from

the remote host.
When there is no outstanding data to be sent then
SND.UNA = SND.NXT.

2.5 Three Way Handshaking
In order for the two ends of the connection to know each
other’s ISN an initial exchange of ISNs, called a three
way handshake (because three packets are exchanged)
is used. The three way handshake is used to initiate the
connection, and once it has completed data can be reli-
ably exchanged. The handshake works as follows:

The ISNs are exchanged in the sequence number field.

3.0 Application interface to the TCP Virtual
Peripheral
The TCP protocol on the SX is designed so that it does
not buffer any packet data. Once the application has
informed the TCP Virtual Peripheral it wants to initiate a
connection, or that it is willing to accept connections, then
the flow of control is passed to the TCP Virtual Periph-
eral. The TCP layer will subsequently call application rou-
tines to request data, or indicate that data has been
received. Any new application must provide the nine
event API routines.

3.1 TCP Interface
These routines are used internally by the TCP Virtual
Peripheral. For some applications it might be desirable to
call them directly.

TCPPassiveOpen

Do a TCP passive open. The SX will then accept connec-
tions on the port specified in TCPLocalPorth and
TCPLocalPortl . This routine should be used to start a
connection if the SX is to act as the server.

TCPActiveOpen

Do a TCP active open. The SX will initiate a connection
with a remote server. Both the local and remote port
numbers and IP addresses should already have been
set.

TCPClose

Force the open TCP connection to close.

TCPTransmit

This routine should be called periodically in the main loop
of the program to allow time to transmit TCP packets.

TCPProcessPacket

This routine should be called when the IPReceive-
Packet routine indicates that a TCP packet has been
received.

4.0 Application Programming Interface
The API is event driven. This is arrangement allows the
byte-at-a-time processing, but does require a different
programming style to be adopted when writing applica-
tion level protocols. Rather than calling sub-routines to
send and receive data, the application writer implements
sub-routines which are called by the TCP when data has
been received or can be transmitted. To create a new
application the following sub-routines must be imple-
mented:

AppInit

Called to allow the application initialize variables and
possibly do a passive open.

AppBytesToSend

Called by the TCP/IP stack to see if the application has
any data to transmit. The application should return with
the number of bytes it wishes to send in the ‘w’ register.

AppBytesAvailable

Called by the TCP/IP stack when a segment is being
received. ‘w’ contains the number of bytes of data that
have been received. This routine is a warning to the
application that its AppRxData routine is about to be
called ‘w’ times.

AppTxData

Called once for each byte to be sent in a segment. The
byte to be transmitted should be returned in ‘w’. The
application must maintain a counter that is incremented
once for each call to AppTxData .

AppRxData

Called once for each received byte. Until the complete
segment has been received the TCP/IP stack cannot be
sure whether the segment has been corrupted in trans-
mit. Therefore the application should not make any irre-
versible changes based on the incoming data, until
AppPacketOK is called.

AppAck

Indication to the application that the last segment trans-
mitted has been acknowledged. This indicates that the
segment won’t need to be transmitted again.

1. A Æ B SYN My ISN is X.
2. B Æ A ACK,SYN My ISN is Y, I acknowl-

edge that your ISN is X.
3. A Æ A ACK I acknowledge that your

ISN is Y.
© 1999 Scenix Semiconductor, Inc. All rights reserved. - 3 - www.scenix.com

TCP Virtual Peripheral Implementation AN27
AppNak

Indication to the application that the last segment has not
been acknowledged. Subsequent calls to AppTxData
should return the same segment data again because the
segment will be transmitted again.

AppPacketOK

The last segment received was not corrupt. At this point
the application can use the segment data.

AppPacketBad

The last segment received was corrupt. The application
should expect to receive the segment again.

4.1 Using the API
The best way to understand how this API works is with an
example event sequence. The first example is of trans-
mitting a short (3 bytes of data) segment. The sequence
of sub-routine calls might look like the following:
AppBytesToSend (returns w=0)

AppBytesToSend (returns w=0)

…

AppBytesToSend (returns w=3)

AppTxData (returns w=43, first data byte)

AppTxData (returns w=8, second data byte)

AppTxData (returns w=56, third data byte)

AppNak

AppTxData (returns w=43, first data byte)

AppTxData (returns w=8, second data byte)

AppTxData (returns w=56, third data byte)

AppAck (or AppNak if segment not acknowledged by
remote host)

Whenever the TCP is idle it calls the API routine App-
BytesToSend to see if the application has an data to
send. As long as the application returns 0 no further
action is taken. When the application returns non-zero
then the TCP knows it has a segment to transmit. So that
the TCP checksum can be calculated the application is
asked to generate the segment data. This is done by call-
ing AppTxData for each byte in the segment. At the end
of the checksum calculation AppNak is called to fool the
application into thinking that the segment was not
acknowledged by the remote host and that it needs to be
transmitted again. AppTxData is then called again for
each byte in the segment. If the segment is acknowl-
edged AppAck is called to let the application know it can
move on to the next segment. If the segment is not
acknowledged then AppNak tells the application to gen-
erate the data again and the process repeats until the
segment is successfully transmitted.

Receiving a segment will consist of a sequence of events
like the following:
AppBytesAvailable (w contains number of bytes in
segment)

AppRxData (w contains byte received)

AppRxData (w contains byte received)

AppRxData (w contains byte received)

AppRxData (w contains byte received)

AppPacketOK

When a TCP segment header is received AppBytesAv-
ailable is called to inform the application that w bytes
are about to be received. This is to allow an opportunity
to do any pre-receive preparation. AppRxData is called
once for each byte of data in the segment. Once the seg-
ment is completely received the network access layer
CRC is evaluated and AppPacketOK or AppPacket-
Bad are called to indicate whether the packet passed the
CRC. If the CRC failed then the application should ignore
any data received in the segment. The TCP will inform
the remote host to transmit the packet again.

For examples of how the API should be used see appli-
cations notes AN26 (SMTP Virtual Peripheral Implemen-
tation) and AN25 (HTTP Virtual Peripheral
Implementation).

4.2 Source Code Description
The lower layers of the TCP/IP stack are described in
application note 23. The TCP protocol can be enabled or
disabled in the TCP/IP source code using the defines at
the top of the file.

TCP uses two banks of SRAM. One bank holds state
information and fields extracted from each packet as it is
processed. The second bank holds the transmission con-
trol block (TCB) which is the data structure that describes
an open TCP connection. Extending the Virtual Periph-
eral to handle multiple simultaneous connections would
require storing and managing multiple TCBs.

4.3 Debugging
The source code contains many debugging statements
which can be used to monitor what the TCP/IP stack is
doing. The debugging statements use the debug serial
port to send special codes to a special program running
on a PC. This program, StatusMonitor.exe can
decode the debugging bytes and display them as
descriptive messages. Debugging messages consist of
either one or two bytes. Single byte messages indicate
that a point in the code has been reached. In two byte
messages the first byte is the message type and second
byte is extra information which is decoded by Status-
Monitor . The complete listing of codes and their mean-
ings is in the file PacketDef.cpp .

Lit#: SXL-AN27-01
© 1999 Scenix Semiconductor, Inc. All rights reserved. - 4 - www.scenix.com

	Application Note 27
	TCP Virtual Peripheral Implementation
	1.0� Introduction
	This application note describes an implementation of the Transmission Control Protocol (TCP) for ...
	The next section describes the TCP protocol and special features of the Scenix SX implementation....
	The TCP Virtual PeripheralTM uses the other Scenix TCP/IP Virtual Peripheral modules described in...

	2.0� The TCP/IP Stack
	For a general overview of the TCP/IP protocol stack, see application note AN23. This application ...
	The transmission control protocol (TCP) provides a data delivery service. It differs from UDP in ...
	2.1� The Transmission Control Protocol (TCP)
	TCP is described in the IETF Request for Comments RFC793. It is a host-to-host transport layer pr...
	Figure�2�1. The Internet Protocol Stack

	2.2� Packet Format Overview
	Figure�2�2. TCP Protocol Header
	The source port is the conceptual network port this segment originated from. The destination port...
	The sequence number and acknowledgment number are used by either end of the connection to achieve...
	The data offset is the number of 32-bit words contained in the TCP header. It can be used to skip...
	The control bits determine the semantics of the packet:
	More than one control bit can be set at a time indication multiple conditions.
	The window indicates to the remote the number of bytes the sender is willing to accept. By changi...
	The checksum field contains a checksum over the TCP header, the TCP data and a pseudo header made...
	The urgent pointer and options are not used by the SX implementation. TCP has the ability to send...
	Following the header is the packet data, if any. The data is not padded and can be an odd number ...

	2.3� TCP Checksum
	The checksum field in the TCP header contains the ones complement of the 16-bit ones complement s...
	The alternative, which is the method used in the SX, is to code the application in such a way tha...

	2.4� Sequence Numbers
	Each unique byte transferred over a TCP connection is uniquely numbered. These are the sequence n...
	When there is no outstanding data to be sent then SND.UNA = SND.NXT.

	2.5� Three Way Handshaking
	In order for the two ends of the connection to know each other’s ISN an initial exchange of ISNs,...
	1.
	A ‡ B
	SYN
	My ISN is X.
	2.
	B ‡ A
	ACK,SYN
	My ISN is Y, I acknowledge that your ISN is X.
	3.
	A ‡ A
	ACK
	I acknowledge that your ISN is Y.
	The ISNs are exchanged in the sequence number field.

	3.0� Application interface to the TCP Virtual Peripheral
	The TCP protocol on the SX is designed so that it does not buffer any packet data. Once the appli...
	3.1� TCP Interface
	These routines are used internally by the TCP Virtual Peripheral. For some applications it might ...
	TCPPassiveOpen
	Do a TCP passive open. The SX will then accept connections on the port specified in TCPLocalPorth...
	TCPActiveOpen
	Do a TCP active open. The SX will initiate a connection with a remote server. Both the local and ...
	TCPClose
	Force the open TCP connection to close.
	TCPTransmit
	This routine should be called periodically in the main loop of the program to allow time to trans...
	TCPProcessPacket
	This routine should be called when the IPReceivePacket routine indicates that a TCP packet has be...

	4.0� Application Programming Interface
	The API is event driven. This is arrangement allows the byte-at-a-time processing, but does requi...
	AppInit
	Called to allow the application initialize variables and possibly do a passive open.
	AppBytesToSend
	Called by the TCP/IP stack to see if the application has any data to transmit. The application sh...
	AppBytesAvailable
	Called by the TCP/IP stack when a segment is being received. ‘w’ contains the number of bytes of ...
	AppTxData
	Called once for each byte to be sent in a segment. The byte to be transmitted should be returned ...
	AppRxData
	Called once for each received byte. Until the complete segment has been received the TCP/IP stack...
	AppAck
	Indication to the application that the last segment transmitted has been acknowledged. This indic...
	AppNak
	Indication to the application that the last segment has not been acknowledged. Subsequent calls t...
	AppPacketOK
	The last segment received was not corrupt. At this point the application can use the segment data.
	AppPacketBad
	The last segment received was corrupt. The application should expect to receive the segment again.
	4.1� Using the API
	The best way to understand how this API works is with an example event sequence. The first exampl...
	Whenever the TCP is idle it calls the API routine AppBytesToSend to see if the application has an...
	Receiving a segment will consist of a sequence of events like the following:
	When a TCP segment header is received AppBytesAvailable is called to inform the application that ...
	For examples of how the API should be used see applications notes AN26 (SMTP Virtual Peripheral I...

	4.2� Source Code Description
	The lower layers of the TCP/IP stack are described in application note 23. The TCP protocol can b...
	TCP uses two banks of SRAM. One bank holds state information and fields extracted from each packe...

	4.3� Debugging
	The source code contains many debugging statements which can be used to monitor what the TCP/IP s...
	Lit#: SXL-AN27-01

