
Sinusoidal waveform generator and Fast
Fourier Transform

Introduction

This application note presents programming techniques for generating sinusoidal
waveforms and performing FFT operations, both of them are common requirements in a lot of
applications such as telephony and other telecommunications applications. Sine wave generation
will be tackled first and followed by discussions on the FFT.

Circuit for sine wave generation

Figure 1 - Sine wave generation circuit diagram

How the circuit and program work
The circuit is basically a traditional R-2R ladder network use to generate analog sine wave

output. If the proper type of resistor is used, the error at the output can be minimized.

The program works by basically using a look up table to find the value of two sine waves
and add them together to generate an instantaneous value for DTMF (dual tone multiple
frequency) output. This value is then output to port B, which is weighted by the resistor values
and generate a corresponding analog value. From the oscilloscope captured waveform shown
below, we can see that the program is performing pretty well. The demo program uses the internal
RC frequency of 4MHz. If an external 3.57945 MHz crystal is used, we can expect the output to
be able to meet some telecom standards with minor tweaking.

The program starts by setting all port B pins to output and then generating tones
corresponding to keys on a telephone keypad, i.e., 0-9, *, and #, by calling a dtmf generation
routine called senddtmf.

Each key generates two tones which are then superimposed together. The instantaneous
value of first sine wave is looked up and stored in the variable NEXTVALUE. Then the
instantaneous value of the second sine wave is looked up and added into NEXTVALUE. Then we
divide NEXTVALUE by 2 and output it to port B. This process is repeated at a constant interval
until the loop count is exhausted. In the process, if we go to the end of a sine wave table, which is
indicated by 127, we will loop back to the beginning of that table and continue.

Modifications and further options

Table lookup for sinusoidal signal generation provide efficient use of micro-
controller time and code space. Even though other methods exist (for example, Z-transform
method of sine wave generation), table lookup is still the best method, judging from our
experience.

To eliminate the R-2R ladder, the readers may consider using an external A/D
converter or combining this program with the virtual peripheral A/D documented in other
application notes.

Fast Fourier Transform

Every electrical engineer has been exposed once or twice in his school days the good
old Fourier series, where every kind of waveform can be represented by a series of sine and
cosine waves. Based on his theorem,

∞

X(ω) = ∫ x(t) e -jωt dt

-∞

we can see that the frequency domain representation, X(w), of the time domain signal, x(t),
is just x(t) multiplied by e-jwt or its more familiar equivalent, cos wt - j sin wt, integrated
over all time. This will extract all elements of the waveform that has elements common with
the sine and cosine signals.

This transform can be applied to discrete signals when we sample the continuous
signal x(t) every T seconds and obtain x(nT), which in most cases, we abbreviate it to x(n)
by setting T=1. Then we get,

 ∞

X(ω) = Σ x(n) e -jωn

n=-∞

In reality, we cannot ever processing an infinite signal due to limitation in time and
space. But we would process a finite length signal, which gives us the Discrete Fourier
Transform (DFT):

 N-1

X(k) = 1/N Σ x(n) e -j (2πnk/N)

 n=0

As we can see, N complex multiplications and N-1 complex additions are needed for
each frequency point k. Since there are N frequency points (or bins) to be computed, we
need N2 complex multiplications and N(N-1) complex additions.

A faster implementation is obviously needed. This problem was solved by the Fast
Fourier Transform algorithm developed by Cooley and Tukey. They cleverly decomposed
the DFT problem into smaller and smaller sub-transforms. The result is an algorithm that
needs only N log2(N) complex multiplications. This is a significant savings as N increases.

Due to the complexity of the derivation of FFT, we will leave that to the more
advanced textbooks that the readers may have access to and concentrate instead to how it is
implemented on the SX.

How the program works

This program performs FFT on 16 points of 16 bit complex data. Each data point is
represented by the real data followed by the imaginary data. If more RAM is present, then
more data points can be handled.

The program starts by clearing all memory location and then loading a test pattern
into the memory starting from $90 using the gen_test macro. Then the radix 2 FFT routine
(radix 2 means that the smallest transform is operated on 2 data points) is called. After FFT
is done, the result needs to be unscramble by calling the unscramble routine.

start
clr fsr ; reset all ram banks

:loop setb fsr.4 ; only second half is addressable
clr ind ; clear

ijnz fsr,:loop ; all

; fsr=0 on entry

gen_test ; Generate Test Vector Data

call R2FFT ; Compute Fourier Transform
page Unscramble
call Unscramble ; bit reverse the scrambled data

The gen_test macro reads data from the test_data table, which contains only the real
part of data. The imaginary part is considered zero and automatically filled in as such.

To aid understanding, the radix 2 FFT algorithm can be represented in the following
C program, which corresponds approximately one-to-one to the assembly language
program. In the assembly language implementation, we used table lookup for implementing
the sine and cosine functions due to time and space considerations.

#include <stdio.h>
#include <math.h>
void main()
{int i,j,k,l,m;
 float Xi,Yi,Xl,Yl,Xt,Yt,sine,cosine,angle;
 int data[32];
 int count1,count2,quartlen,TF_offset,TF_addr;
 const Fftlen=16;
 const power=4;
 const Scale=1;

 for (i=0;i<32;i+=16)
 {data[i]=0x0;data[i+1]=0;
 data[i+2]=0x2d40;data[i+3]=0;

 data[i+4]=0x3fff;data[i+5]=0;
 data[i+6]=0x2d40;data[i+7]=0;
 data[i+8]=0x0;data[i+9]=0;
 data[i+10]=0xffffd2c0;data[i+11]=0;
 data[i+12]=0xffffc001;data[i+13]=0;
 data[i+14]=0xffffd2c0;data[i+15]=0;

 }
 for (m=0;m<32;m++) printf("[%d]=%x\n",m,data[m]);

count2=Fftlen;
quartlen=Fftlen/4;
TF_offset=1;
for (k=power;k>0;k--)
{

 count1=count2;
 count2=count2/2;
 TF_addr=0;
 printf("\nkloop k=%d\tcount1=%d\tcount2=%d\n",k,count1,count2);
 for (j=0;j<count2;j++)
 {
 printf("\njloop j=%d\t",j);
 angle=(float)TF_addr/16.0*(3.14159*2.0);
 printf("TF_addr=%d\tangle=%f\t",TF_addr,angle);
 sine=sin(angle);
 cosine=cos(angle);
 printf("sin=%f\tcos=%f\n",sine,cosine);
 TF_addr+=TF_offset;

 for (i=j*2;i<2*Fftlen;i=i+count1*2)
 {
 l=count2*2+i;
 printf("\ni=%d\tl=%d\t",i,l);
 Xl=data[l];Yl=data[l+1];
 Xi=data[i];Yi=data[i+1];
 Xt=Xi-Xl;
 Yt=Yi-Yl;
 printf("Xt=%f\tYt=%f\t",Xt,Yt);
 Xi=Xi+Xl;
 Yi=Yi+Yl;
 printf("Xi=%f\tYi=%f\n",Xi,Yi);
 if (Scale)
 {
 Xi/=2;Yi/=2;Xt/=2;Yt/=2;
 }

 Yl=cosine*Yt-sine*Xt;
 Xl=cosine*Xt+sine*Yt;
 printf("cosine*Yt=%f\tsine*Xt=%f\tYl=cosine*Yt-sine*Xt=%f\n",cosine*Yt,sine*Xt,Yl);
 printf("cosine*Xt=%f\tsine*Yt=%f\tXl=cosine*Xt+sine*Yt=%f\n",cosine*Xt,sine*Yt,Xl);

 data[l]=Xl;
 data[l+1]=Yl;
 data[i]=Xi;
 data[i+1]=Yi;
 }

 }

 TF_offset=2*TF_offset;
 for (m=0;m<32;m++) printf("[%d]=%x\n",m,data[m]);

}

}

Time domain Frequency domain
z(0) Z(0)
z(1) Z(8)
z(2) Z(4)
z(3) Z(12)
z(4) Z(2)
z(5) Z(10)
z(6) Z(6)
z(7) Z(14)
z(8) Z(1)
z(9) Z(9)
z(10) Z(5)
z(11) Z(13)
z(12) Z(3)
z(13) Z(11)
z(14) Z(7)
z(15) Z(15)

Each cross represents a FFT operation called butterfly, which is:

z(I) z’(I)=z(I)+z(L) = {x(I)+x(L)}+ j { y(I)+y(L)}
z(L) z’(L)={z(I)-z(L)}*(cos ωω - j sin ωω)

 = {x(t)+j y(t)} *(cos ωω - j sin ωω)
 = x(t) cos ωω -j x(t) sin ωω + j y(t) cos ωω + y(t) sin ωω
 = { x(t) cos ωω+ y(t) sin ωω} + j {y (t) cos ωω- x(t) sin ωω}

At the end of the operations, the data points will be replaced by the real and
imaginary part of the corresponding frequency bin. As we can see, more frequency bins
mean higher spectral resolution.

Some note is necessary for the sine/cosine functions. Since the cosine function can
be considered just a phase shifted version of sine function, they are combined together as
such in the lookup table.

After all the operations, we can see that the results are in a bit reversed (scrambled)
order. We have used some features of SX to simplify this operation. From the following
code segment, we can see how bit 3 to bit 0 are reversed. This is considered quite efficient.

Unscramble
clr VarIloop ; i=0..15

reverse
clr VarL
snb VarIloop.3
setb VarL.0
snb VarIloop.2
setb VarL.1
snb VarIloop.1
setb VarL.2
snb VarIloop.0
setb VarL.3

The unscrambled results then represents the corresponding frequency bins.
Results and summary

The whole routine (including FFT, unscramble and sine table) occupies 455 words of
program space. It uses 44 bytes of RAM for the routine and 64 bytes for the 16 point
complex data, each of 16 bit wide.

The test data is a piece of sine wave generated from the following table:
FFT * 16 FFT FFT FFT

Point angle sin sin scaled sine scaled (hex) real part im part abs.mag.
0 0 0 0 0000 0 0 0 0
1 0.785398 0.707107 11584.88 2D40 0 0 0 0
2 1.570796 1 16383.5 3FFF -

1.303755
4889849
8E-010-
131068i

-8.14847E-12 -8191.75 8191.75

3 2.356194 0.707107 11584.88 2D40 0 0 0 0
4 3.141593 1.23E-16 2.01E-12 0000 0 0 0 0
5 3.926991 -0.70711 -11584.9 FFFFFFD2C0 0 0 0 0
6 4.712389 -1 -16383.5 FFFFFFC001 0 0 0 0
7 5.497787 -0.70711 -11584.9 FFFFFFD2C0 0 0 0 0
8 6.283185 -2.5E-16 -4E-12 0000 0 0 0 0
9 7.068583 0.707107 11584.88 2D40 0 0 0 0

10 7.853982 1 16383.5 3FFF 0 0 0 0
11 8.63938 0.707107 11584.88 2D40 0 0 0 0
12 9.424778 3.68E-16 6.02E-12 0000 0 0 0 0
13 10.21018 -0.70711 -11584.9 FFFFFFD2C0 0 0 0 0
14 10.99557 -1 -16383.5 FFFFFFC001 1.114314

3829536
7E-
010+131
068i

6.96446E-12 8191.75 8191.75

15 11.78097 -0.70711 -11584.9 FFFFFFD2C0 0 0 0 0

This corresponds to the following sine wave:

-1

-0.5

0

0.5

1

1 4 7 10 13 16

Series1

The result from FFT using the scaled sine data with Microsoft Excel is:

FFT abs.mag.

0

2000

4000

6000

8000

10000

1 3 5 7 9 11 13 15

FFT abs.mag.

This is in accordance with the program output as seen in the following captured
debug window. Here, Z(2) is FFFF+j E000 or (-1 +j -8192). Z(6) is j FFFF (j -1). And
Z(14) is 0+ j 1FFE (0 + j 8190). The error is only minimal. To get the decimal equivalent,
they must all be divided by 32767, which is the scaling factor.

Modifications and further options

To increase the number of data points, 8 bit data can be used so that 32 point FFT
can be done. For further increase, we need to resort to the use of FFT for real data. This
would demand a somehow significant modifications, which will allow us to process 64 point
FFT.

With 8 bit data, the multiplication routine will become 8 x 8 and hence faster. This
would increase the performance as well if 8 bit resolution of data is acceptable.

