
User’s Primer
IP2022 Internet Processor™

Revision History

© 2001 Ubicom, Inc. All rights reserved. No warranty is provided and no liability is assumed by Ubicom with
respect to the accuracy of this documentation or the merchantability or fitness of the product for a particular
application. No license of any kind is conveyed by Ubicom with respect to its intellectual property or that of
others. All information in this document is subject to change without notice.

Ubicom products are not authorized for use in life support systems or under conditions where failure of the
product would endanger the life or safety of the user, except when prior written approval is obtained from
Ubicom.

Ubicom™ and the Ubicom logo are trademarks of Ubicom, Inc.
Internet Processor™ is a trademark of Ubicom, Inc.
All other trademarks mentioned in this document are property of their respective companies.

Revision Release Date Summary of Changes
1.0 March 15, 2001 Original issue.

1.1 April 5, 2001 Merged with demo board User’s Guide.

1.2 May 20, 2001 Rewritten for the Unity IDE.

Ubicom, Inc.
1330 Charleston Road
Mountain View, CA 94043
tel 650 210 1500
fax 650 210 8715
www.ubicom.com

Table of Contents
1 Quick Set Up 1

2 Overview 3
2.1 Minimum System Requirements . 9
2.2 Installation CD-ROM . 10
2.3 Installing the Software .11
2.4 Contents of the ubicom Directory . 12

3 Evaluation Kit and Demo Board 13
3.1 Terminology . 14
3.2 Demo Board Set-Up . 15

3.2.1 Demo Board Connections . 15
3.2.2 Power Supply . 15
3.2.3 PC/Terminal Connection . 16
3.2.4 ISD/ISP Connection . 16
3.2.5 Verifying Installation . 17

3.3 Description of Hardware Blocks . 17
3.3.1 IP2022 . 17
3.3.2 Reset . 17
3.3.3 Clock . 18
3.3.4 RTCLK. 18
3.3.5 Power . 18
3.3.6 ISD/ISP . 18
3.3.7 ADC and ADC Reference . 19
3.3.8 Run LED . 19
3.3.9 I2C EEPROM . 19

3.3.10 SPI Temperature Sensor . 20
3.3.11 On-Board Power Supply. 20
3.3.12 User LEDs . 20

3.4 Switches . 20
3.4.1 Jumpers . 21
www.ubicom.com iii

Table of Contents—IP2022 Getting Started
3.4.2 Connectors. 23
3.4.3 Prototype Area . 23
3.4.4 Daughter Board Connectors (J3, J4). 23
3.4.5 Test Points . 26

3.5 Board Configuration Options. 26
3.5.1 RS232 (JP15-JP23) . 27
3.5.2 I2C (JP1, JP3, JP6) . 27
3.5.3 SPI (JP2, JP4, JP5, JP7). 28
3.5.4 IOVDD (JP13) . 28
3.5.5 Tool VDD (JP24). 28
3.5.6 Clock (JP14) . 28
3.5.7 RTCLK (JP12) . 28
3.5.8 4-Bit DIP Switch (JP8-JP11) . 29
3.5.9 Run LED (JP26) . 29

4 Unity User Interface 31
4.1 Unity Windows. 33
4.2 Unity Menu Bar . 33
4.3 Unity Tool Bar . 34
4.4 Creating a New Project . 38
4.5 Adding and Removing Files . 39
4.6 Project File Tree . 40

5 Configuring ipModules 41
5.1 Project Configuration GUI . 42
5.2 Generating Makefiles and Header Files 44

6 Compiling 45

7 Debugging 49
7.1 Debugging Tool Bar . 49
7.2 Viewing Program Execution . 52
7.3 Breakpointing Program Execution . 54
7.4 Viewing Registers . 58
7.5 Viewing Memory . 59
iv www.ubicom.com

IP2022 Getting Started—Table of Contents
7.6 Memory Map . 62

8 Utilities 63
8.1 IP2KProg User Interface . 65

8.1.1 Downloading a Project . 67
8.2 GNU Binary Utilities . 68

A Assembly Language Syntax 71
A.1 Comments, Constants, and Symbols. 71
A.2 Addressing Modes. 73
A.3 Sections Used in Default Linker Script. 75
A.4 Summary of CPU Instructions . 75
A.5 Summary of CPU and Peripheral Registers 83
A.6 List of IP2022-Specific Reserved Words 90
A.7 Directives . 91
A.8 In-Line Assembly in C Source Files . 92

B Demo Board Schematics 93
B.1 IP2022 . 94
B.2 Reset . 95
B.3 Clock . 95
B.4 RTCLK. 96
B.5 Power . 96
B.6 ISD/ISP . 97
B.7 RS-232 Communications . 98
B.8 ADC and ADC Reference . 99
B.9 Run LED . 100

B.10 I2C EEPROM . 100
B.11 SPI Temperature Sensor . 101
B.12 On-Board Power Supply. 101
B.13 User LEDs . 102
B.14 Switches . 103
B.15 Jumpers . 105
B.16 Connectors . 106
www.ubicom.com v

Table of Contents—IP2022 Getting Started
B.17 Prototype Area . 107
B.18 Daughter Board Connectors (J3, J4). 109
B.19 Test Points . 109
B.20 Bypass Capacitors . 110
B.21 Mounting Holes . 110
vi www.ubicom.com

List of Figures
Figure 2-1 Configuration Files . 4
Figure 2-2 Compilation Tool Chain . 5
Figure 4-1 Unity (Default View) . 32
Figure 5-1 Project Configuration GUI . 42
Figure 6-1 Makefile Structure. 47
Figure 7-1 Browse Tab . 55
Figure 7-2 Setting a Breakpoint. 56
Figure 7-3 Stack Window . 57
Figure 7-4 Registers Window. 58
Figure 7-5 Quick Watch Box . 59
Figure 7-6 Watch Window . 60
Figure 7-7 Memory Window . 61
Figure 7-8 Debugging Memory Space . 62
Figure 8-1 IP2KProg User Interface . 65
www.ubicom.com vii

List of Figures—IP2022 Getting Started
viii www.ubicom.com

List of Tables
Table 2-1 Summary of Files... 6
Table 2-2 System Requirements... 9
Table 2-3 Summary of Directories .. 10
Table 2-4 Summary of ubicom Directories 12
Table 3-1 Demo Board Jumpers ... 21
Table 3-2 SERDES1 (J3) Pin Assignments 24
Table 3-3 SERDES2 (J4) Pin Assignments 25
Table 3-4 Test Points.. 26
Table A-1 Special Characters .. 72
Table A-2 Addressing Modes... 74
Table A-3 Key to Abbreviations and Symbols............................... 75
Table A-4 Logical Instructions.. 77
Table A-5 Arithmetic and Shift Instructions.................................... 77
Table A-6 Bit Operation Instructions ... 81
Table A-7 Data Movement Instructions .. 81
Table A-8 Program Control Instructions ... 82
Table A-9 System Control Instructions ... 82

Table A-10 Register Addresses and Reset State 83
www.ubicom.com ix

List of Figures—IP2022 Getting Started
x www.ubicom.com

Preface
This manual introduces the tools used for software development on the
IP2022. For detailed information about programming the IP2022, see the
IP2022 User’s Manual.

The tools are based on the GNUPro tool chain supported by Red Hat. For
detailed information about the tools, see the GNUPro documentation.

Related Documentation

Main documentation for the IP2022:

• IP2022 Data Sheet, available from Ubicom.
• IP2022 User’s Manual, available from Ubicom.
• IP2022 Quick Reference Guide, available from Ubicom.

Reference manuals for the tool chain:

• GNUPro Toolkit—GNUPro Utilities, available from Red Hat.
• GNUPro Toolkit—GNUPro Compiler Tools, available from Red Hat.
• GNUPro Toolkit—Debugging with GDB, available from Red Hat.

Notational Convention

In this document, the notation “->” is used to refer to a command selected from
a menu. For example, the Save command on the File menu is File -> Save.

The Start menu accessed by clicking on the Start button (lower left corner of
screen), then clicking on Programs. After installing the Ubicom software, the
Programs menu will contain a Ubicom entry which is used to access the
www.ubicom.com xi

Preface—IP2022 Getting Started
software tools. In this document, references to the Ubicom menu actually
mean commands selected from the Start -> Programs -> ubicom menu.

File Naming Conventions

Both MS-DOS and Unix file naming conventions are used in this document. An
MS-DOS file name uses backslashes as separators, such as
C:\Ubicom\sdk\projects\starter\Makefile.

Unix file names are used for Configuration Tool parameter values, names in
make files, and the SDK directory tree. A Unix file name uses forward slashes
as separators, such as /cygdrive/c/Ubicom/sdk/projects/starter/Makefile.

The Unix operating system is case sensitive, e.g. the names “makefile” and
“Makefile” would refer to two different files. Because the software tools run
under Windows/MS-DOS, however, all file names are interpreted as non-case-
sensitive without regard to which file naming convention is used.

Unix file names do not have embedded space characters, so names like
“Program Files” cannot be used as names for files or directories in the path to
a file.
xii www.ubicom.com

IP2022 Getting Started—Preface
Chapter Summary

Chapter 1 is a quick procedure to set up the Demo Board, install the CD-ROM
software, and compile, download, and run the starter project on the Demo
Board. The starter project is used as an example throughout this book. The
following chapters present more detailed information about each of these
steps.

Chapter 2 is an overview of the Unity integrated development environment
(IDE) and the starter project. The CD-ROM software and installation
procedure are described in this chapter.

Chapter 3 describes the Demo Board hardware and set-up procedure. The
starter project is preloaded on the Demo Board, and it begins execution
after power is applied.

Chapter 4 introduces the Unity user interface and the structure of a Unity
project.

Chapter 5 examines the starter project configuration and walks through
generating the config.h and config.mk files.

Chapter 6 discusses the events which occur when a project is compiled.

Chapter 7 walks through debugging a project on the Demo Board.

Chapter 8 describes utility programs for working with .elf files.
www.ubicom.com xiii

Preface—IP2022 Getting Started
xiv www.ubicom.com

1.0 Quick Set Up

The following steps comprise a quick set up procedure for the CD-
ROM software and Demo Board.

1. Install Software from the CD-ROM—uninstall any previous
installation of the GNUPro tools (ip2ktools), Unity, and Soft-
ware Development Kit (SDK). Then run the installation pro-
grams for each of these software distributions:

Run IP2022 Development Tools\In-

stall\IP2000 GNUPro Tools Setup.exe

(name may vary).
Run Software Development Kit_SDK\In-

stall\IP2000 Unity Setup.exe (name may
vary).
Run IP2022 Development Tools\In-

stall\IP2000 SDK Setup.exe (name may vary).
2. Connect Demo Board—connect the parallel cable to the

host PC. At the other end of this cable, connect the adapter
cable from the parallel cable to the Demo Board. The red
strip on the connector to the Demo Board should be closest
to the header labelled DGND. Connect the serial cable be-
tween the host PC and the Demo Board serial connector la-
beled To PC. Then, connect the power supply cable to the
Demo Board and plug the power supply into an AC outlet.
www.ubicom.com 1

Quick Set Up—IP2022 Getting Started
3. Create a Project—create a directory called
C:\Ubicom_Projects. Open Unity by selecting Pro-
grams -> Ubicom -> Unity from the Windows Start menu.
Then, select the Project -> New command from the Unity
menu bar. For the project name, enter
C:\Ubicom_Projects\Project1.c_c. For the
project type, select SDK and click the OK button. Select
starter, then click the OK button. Compile the project by se-
lecting the Build -> Compile command from the Unity menu
bar.

4. Download Project—enter device programming mode by se-
lecting the Build -> Start Programmer command from the
Unity menu bar. In the new window which appears, click the
Program button, then click the Close button.

5. Verify Operation—the LED bank on the Demo Board dis-
plays a binary counter.
Echoing on the serial communication port can be verified by
launching a serial terminal emulator with the following set-
tings:

9600 baud
8-bit ASCII
No parity
1 stop bit
No flow control
Local echo off

Characters typed in the terminal emulator will be echoed back
by the Demo Board.
2 www.ubicom.com

2.0 Overview

Ubicom’s approach to developing embedded Internet applications
combines an extensive library of ipModule™ software with Unity,
a powerful integrated development environment (IDE). User-
friendly tools simplify incorporating these tested modules into
applications, resulting in the fastest path from product concept to
market entry.

The philosophy behind this approach is to provide a high-level
interface to building blocks such as communication packages and
peripheral interfaces. By reducing the time and effort dealing with
the nuts-and-bolts of register and bit-level operations, the system
designer is free to concentrate on product differentiation and
increasing value-added for the customer.

The files which comprise an application are called a project. There
are five phases in project development with Unity:

• Configuring the Project—ipModules have options which can
be customized for a specific application. For example, a UART
ipModule has options for baud rate and port pin assignments.
The project configuration controls the selection of ipModules
that are included in a project and the settings for their options.

• Creating and Editing Source Files—Unity includes a source-
file editor for C and assembly language files.
www.ubicom.com 3

Overview—IP2022 Getting Started
• Compiling the Project—Unity calls the GNUPro tool chain to
compile, assemble, and link the project files, to produce an ex-
ecutable file in ELF format.

• Programming the IP2022—Unity downloads executable code
to the IP2022 device through the ISD/ISP interface.

• Debugging—the source-level editor is part of the GUI for a
powerful C/assembly language debugger.

The files used for project configuration are shown in Figure 2-1.
Unity keeps information about the project in a file with the .c_c
extension, such as the names of the source files which compose
the project, debugger settings, display fonts, etc.

Figure 2-1 Configuration Files

Unity keeps configuration information in a file with the .lpj
extension. Whenever a new configuration is created or an existing
configuration is changed, Unity can generate new config.mk
and config.h files. These files contain macro definitions that
control ipModule selection and option settings during compilation.

515-084.eps

config.mk.lpj config.h

Unity
IDE .c_c

Unity
Project File
4 www.ubicom.com

IP2022 Getting Started—Overview
The files used by the GNUPro tool chain are shown in Figure 2-2.

Figure 2-2 Compilation Tool Chain

.o

.c

.elf

config.h

GNU C
Compiler

GNU
Linker

Unity
Debugger

515-085.eps

.S

.o

Source Files

Relocatable
Object Files

Executable File

Target
System

Unity
IDE

ip2kelf.ld
Linker
Script File

.c_c
Unity
Project File
www.ubicom.com 5

Overview—IP2022 Getting Started
As mentioned before, the config.h header file is generated
automatically by Unity from the project configuration. Files with the
.c and .S extensions are C and assembly language source files,
respectively. For each .c and .S source file listed in the .c_c
project file, the GNU C compiler is called to generate a relocatable
object file with the .o extension.

The GNU linker reads the .o object files and a linker script file,
and it produces an executable file with the .elf extension. Most
users will not need to modify the default linker script file
ip2kelf.ld provided by Ubicom. A powerful source-level
debugger downloads the .elf executable file to the target
system and controls its operation.

The files used by Unity and the GNUPro tool chain are
summarized in Table 2-1.

Table 2-1 Summary of Files
File Type Description

.c C source file—source file(s) for the applica-
tion.

.c_c Unity project file—used by Unity to store
project-specific information (location of
source files, etc.).

.elf Binary file—executable code in the ELF file
format.
6 www.ubicom.com

IP2022 Getting Started—Overview
.lpj Configuration Tool project file—used by Con-
figuration Tool to store project-specific infor-
mation (ipModule selection, I/O port pin
assignments, etc.).

.o Object file—compiled object code.

.S Assembly-language source file—pure
assembly language file, as opposed to in-line
assembly in a C source file.

config.h Automatically generated C header file—
macro definitions used by the C compiler.

config.mk Automatically generated makefile—macro
definitions used by the make utility.

ip2kelf.ld Linker script file—most users will not need to
modify the default ip2kelf.ld file pro-
vided by Ubicom.

Makefile Project makefile—the top-level makefile in
the project directory called by Unity.

Makefile.inc Source file makefiles—all source file directo-
ries have an associated Makefile.inc
with rules for compiling the files they contain.

Table 2-1 Summary of Files (continued)
File Type Description
www.ubicom.com 7

Overview—IP2022 Getting Started
A typical development sequence is:

1. Copy a Project Template—start a new project by copying a
template, to make sure all of the default files are present.
Unity keeps information about the project, such as the
names and locations of its source files, in a file with the
.c_c extension.

2. Describe the Project Configuration—a GUI-based editor is
used to select the ipModules used in a project and custom-
ize their features. Unity keeps information about the project
configuration in a .lpj file. Unity uses this information to
generate the config.mk and config.h files.

3. Write Source Files in C or Assembly Language—Unity has
a simple, intuitive text editor for source files. C source file
names have a .c extension, and assembly language file
names have a .S extension.

4. Compile the Project—an executable .elf file is produced.
Intermediate files such as object files (.o extension) are
generated in the project directory.

5. Debug the Project—the debugger downloads and controls
program execution on the target.
8 www.ubicom.com

IP2022 Getting Started—Overview
2.1 Minimum System Requirements
The hardware and software requirements for running the Unity
IDE are described in Table 2-2.

Table 2-2 System Requirements
Feature Requirements

CPU Pentium 2 or equivalent
300 MHz or greater

Memory 64 Mbytes

Free Disk Space 300 Mbytes
Operating System Windows 98/Windows NT/Windows 2000

Peripherals Required—parallel port
Recommended—serial port, Ethernet
interface
www.ubicom.com 9

Overview—IP2022 Getting Started
2.2 Installation CD-ROM
The installation CD-ROM has four directories, described in Table
2-2.

Table 2-3 Summary of Directories
Name Description

IP2022
Development Tools

GNUPro tools directory. The Install subdi-
rectory contains the installation programs
for the GNUPro tools and the Unity IDE.

IP2022
Demo Board

Demo Board documentation, including
schematics, layout, and bill of materials.

IP2022 Silicon
Documentation

IP2022 Data Sheet and User’s Manual.

Software
Development Kit

The Install subdirectory contains the
installation program for the ipModule soft-
ware and template files.
10 www.ubicom.com

IP2022 Getting Started—Overview
2.3 Installing the Software
Although the software can be installed anywhere, in the beginning
you should keep the default directory structure to avoid errors
caused by relocating the directories. Names used for directories
and source files must not have embedded spaces (e.g. “Program
Files”).

1. Remove Previous Installation—if an earlier installation used
a different installation directory for the tools, it may be nec-
essary to remove the Ubicom menu to prevent Windows
from searching for the tools in their old location. Any files
compiled with an earlier release of the tools should be re-
moved and recompiled from their sources.

2. Install GNUPro Tools—run IP2022 Development

Tools\Install\IP2000 GNUPro Tools Set-

up.exe (name may vary).
3. Install SDK—run Software Development

Kit_SDK\Install\IP2000 SDK Setup.exe (name
may vary). Allow all of the default selections to be used.

4. Install Unity—run IP2022 Development Tools\In-

stall\IP2000 Unity Setup.exe (name may vary).
Allow all of the default selections to be used.
Unity will modify the C:\autoexec.bat file to add an
IP2K path variable. The default path is:
C:\ubicom\ip2ktools\H-i686-pc-cygwin32\bin

5. Restart the computer—this is necessary for the changes
made in Autoexec.bat to take effect.
www.ubicom.com 11

Overview—IP2022 Getting Started
2.4 Contents of the ubicom Directory
After installation, the ubicom directory has four subdirectories,
described in Table 2-2.

Table 2-4 Summary of ubicom Directories
Name Description

Help Documentation files used by on-line help.

ip2ktools Executable files for tools and utilities.

sdk Project templates and ipModule software.
Unity Unity executable file and assembly language

project template.
12 www.ubicom.com

3.0 Evaluation Kit and Demo Board

The IP2022 Evaluation Kit provides a cost-effective demonstration
and evaluation platform for the IP2022 Internet processor. The
Evaluation Kit comes with source code and software tools on CD-
ROM for developing applications using the ipModule library. The
complete documentation set for the hardware and software is
included on the CD-ROM.

The IP2022 evaluation kit contains:

• IP2022 Demo Board (silk screen labelled as ”IP2022 DEMO
BOARD V1.0”)

• AC Adapter (12 VDC output)
• ISD/ISP Cable (between PC parallel port and Demo Board)
• DB9 Serial Cable
• CD-ROM with Software Tools, Documentation, and starter

Example

The Demo Board provides the hardware to demonstrate the
IP2022 and ipModules. Its hardware features include:

• IP2022 Internet Processor
• 12 VDC Power Input
• RS-232 Serial Connections (for DTE to DTE with optional

hardware flow control and DTE to DCE/modem)
• Daughter Board Connectors for Ethernet and USB Interfaces
www.ubicom.com 13

Evaluation Kit and Demo Board—IP2022 Getting Started
• Switching Power Supply with Power-On LED
• Run LED (controlled from software)
• 4 MHz Crystal
• 32.768 kHz Crystal for RTCLK
• Reset Button
• External EEPROM
• Digital Temperature Sensor with SPI Interface
• 4 Pushbuttons
• 4 DIP Switches
• 8-LED Bank
• ADC Input
• 2.5V ADC External Reference Voltage
• ISP/ISD 10-pin Header
• Prototyping Area
• Multiple Test Points

3.1 Terminology
Some terms used in discussing the Evaluation Kit are:

• Daughter Board—a piggyback board which connects to a 60-
pin connector on the Demo Board to provide extra hardware
for a particular interface, e.g. an Ethernet Daughter Board with
transformer.

• ipModule—software module from the Ubicom library.
• ISD/ISP—in-system debugging/in-system programming. A

standard 10-pin ISD/ISP connector provides all necessary sig-
nals for downloading code to the IP2022 and controlling and
monitoring its operation.
14 www.ubicom.com

IP2022 Getting Started—Evaluation Kit and Demo Board
• sdk—Software Development Kit
• SerDes—Serializer/Deserializer multiprotocol serial commu-

nications peripherals on the IP2022
• starter Example—complete small application for demon-

strating the Demo Board and software tools. Also used as a
template for developing new applications.

3.2 Demo Board Set-Up

3.2.1 Demo Board Connections
The board is preloaded with the starter example which begins
running immediately after power is applied, if the cable
connections and jumper placements are correct. To ensure proper
operation, the board is provided with jumpers in place for running
the starter example. The jumper settings are covered in
Section 3.4.1. The cable connections to be made are:

• Power Supply
• PC/Terminal serial connection
• ISD/ISP parallel port cable

3.2.2 Power Supply
The supplied wall-mount AC adapter provides 12 VDC at 800 mA.
If the supplied AC adapter is not used, the applied voltage should
be within the range of 8 to 15 VDC. The center contact of the
power connector is positive voltage with respect to the sleeve.
www.ubicom.com 15

Evaluation Kit and Demo Board—IP2022 Getting Started
3.2.3 PC/Terminal Connection
Any terminal or terminal program may be used if it allows for the
following settings:

• 9600 baud
• 8 bit ASCII
• No parity
• 1 stop bit
• No flow control
• Local echo off

To use this interface, jumpers are required on DCE_TXD and
DCE_RXD.

3.2.4 ISD/ISP Connection
A parallel port cable (DB25 male to DB25 female) and a short
converter cable (DB25 male to 10-pin female header) are used for
in-system debugging and programming. The parallel port cable is
connected between the parallel port connector on a PC and the
DB25 male connector on the converter cable. The 10-pin
connector on the converter cable is connected to the Demo Board.
The connector mates to a group of nine header pins on the Demo
Board. Pin 1 of the connector, which is indicated by a red stripe,
does not have a header pin. The connector is installed with Pin 1
toward the right edge of the board.
16 www.ubicom.com

IP2022 Getting Started—Evaluation Kit and Demo Board
3.2.5 Verifying Installation
After the cables are connected, power can be applied to the board.
The power LED on the Demo Board should light up, and the LED
bank should begin strobing a single lit LED from left to right.

3.3 Description of Hardware Blocks

3.3.1 IP2022
The IP2022 Internet processor is packaged in an 80-pin PQFP. It
contains a CPU, 64 Kbytes of program flash memory, 16 Kbytes of
program RAM, 4 Kbytes of data RAM, and many hardware
peripherals. The fast RISC CPU (up to 100 MIPS) allows
emulating many more peripherals using ipModule software.

3.3.2 Reset
There are five possible sources of IP2022 reset:

• Power-On Reset—automatically triggered after power is ap-
plied.

• External Reset—manually triggered from a pushbutton.
• Brown-Out Voltage Level—triggered if Vdd drops below the

brown-out voltage level.
• Watchdog Timer—if enabled, software must periodically exe-

cute a cwdt instruction to avoid reset triggered by overflow of
the Watchdog Timer.

• ISD/ISP interface—reset issued from the debugger (Unity).
www.ubicom.com 17

Evaluation Kit and Demo Board—IP2022 Getting Started
3.3.3 Clock
A 4 MHz crystal is connected between pins OSC1 and OSC2 of
the IP2022. The 4 MHz crystal can be disconnected from OSC1
by removing jumper JP14.

3.3.4 RTCLK
A 32.768 kHz crystal is connected between pins RTCLK1 and
RTCLK2 of the IP2022. The 32.768 kHz crystal can be
disconnected from RTCLK1 by removing jumper JP12.

3.3.5 Power
The IP2022 core logic is powered from the +2.5D digital power rail.
The IP2022 pins are driven from the IOVDD power rail, which is
selectable between 3.3V and 2.5V. The on-chip ADC is connected
to the +2.5A analog power rail. A separate analog power rail is
provided to isolate the analog section of the IP2022 from noise on
the digital power rail.

3.3.6 ISD/ISP
The ISD/ISP connector provides a debugging and programming
interface to a host PC through a standard 10-pin connector. Pullup
resistors on input signals allow the ISD/ISP interface to be
disconnected while the board is powered, however the interface
should be closed (disconnected) from the debugger before
18 www.ubicom.com

IP2022 Getting Started—Evaluation Kit and Demo Board
removing the electrical connection, to avoid generating spurious
debugger commands.

3.3.7 ADC and ADC Reference
The ADC IN and AGND test points may be used to apply a voltage
(0–2.5V) to the ADC input. On the Demo Board, the ADC input is
ADC channel 7 (RG7). However, ADC channel 0 through 6 can
also be accessed from the prototype area or through the daughter
board connectors (SERDES1 and SERDES2).

The ADC may use the internal IP2022 voltage reference or an
external reference on the RG3 port pin. Jumper JP25 connects a
2.5V precision reference voltage to the RG3 pin.

3.3.8 Run LED
Software can indicate code execution on the Run LED when
jumper JP26 is inserted.

3.3.9 I2C EEPROM
An external EEPROM provides 32K bytes of memory. The IP2022
communicates with the EEPROM through an I2C ipModule.
www.ubicom.com 19

Evaluation Kit and Demo Board—IP2022 Getting Started
3.3.10 SPI Temperature Sensor
An external temperature sensor provides temperature readings to
the IP2022 through SerDes 1 operating in SPI interface mode or
through an SPI ipModule.

3.3.11 On-Board Power Supply
An on-board switching power supply provides the following
voltages from the 12 VDC input:

• +5V at 500 mA
• +3.3V at 500 mA
• +2.5V at 500 mA
• Unregulated >12V

The POWER LED indicates when power is on.

3.3.12 User LEDs
The LED bank is connected to Port B through an 8-bit DIP switch
(SW1). The LEDs can be disconnected from Port B by opening the
switches, e.g. for other uses of Port B.

3.4 Switches
Switch SW1 connects the LED bank to Port B.

Switches SW2, SW3, SW5, and SW6 are pushbutton switches
which can be accessed at header J7. These switches are not
20 www.ubicom.com

IP2022 Getting Started—Evaluation Kit and Demo Board
initially connected to the IP2022, but are available for any
purpose.

Switch SW4 is a 4-bit DIP switch connected to Port A.

Switch SW7 is the IP2022 reset switch.

3.4.1 Jumpers
The jumpers are described in Table 3-1. When a jumper is shown
as unconnected as shipped, it means the Demo Board is shipped
with the jumper over one pin of the header. This is used as a
parking place to hold the jumper.

Table 3-1 Demo Board Jumpers

Block Description Jumper IP2022
Signal

Connected As
Shipped?

RS232 DCE_TXD JP21 RF1 Yes

DCE_RXD JP15 RF7 Yes
DCE_RTS JP20 RC1 No

DCE_CTS JP16 RC2 No

RS232 DTE_TXD JP22 RE5 No
DTE_RXD JP17 RE3 No

DTE_RTS JP23 RC0 No

DTE_CTS JP18 RC3 No
DTE_DCD JP19 RC4 No
www.ubicom.com 21

Evaluation Kit and Demo Board—IP2022 Getting Started
I2C I2C-SDA JP1 RE5 No

I2C-SDA JP3 RE3 No

I2C-SCL JP6 RE0 No
SPI SPI-SCK JP4 RE0 No

SPI-SDO JP2 RE3 No

SPI-CS/ JP5 RC5 No
SPI-SDI JP7 RE5 No

IOVDD 2.5V or 3.3V JP13 IOVDD 3.3V

Tool
VDD

2.5V or 3.3V JP24 None No

Clock OSC JP14 OSC1 Yes

RTCLK RTCLK JP12 RTCLK1 No

4-Bit
DIP

CFG0 JP8 RA0 No

CFG1 JP9 RA1 No

CFG2 JP10 RA2 No

CFG3 JP11 RA3 No
ADC Ext. 2.5V Vref JP25 RG3 Yes

RUN
LED

RUN JP26 RG6 No

Table 3-1 Demo Board Jumpers (continued)

Block Description Jumper IP2022
Signal

Connected As
Shipped?
22 www.ubicom.com

IP2022 Getting Started—Evaluation Kit and Demo Board
3.4.2 Connectors
There are five connectors on the Demo Board:

• DC power
• Serial RS232 (DB9)
• SERDES1 (60-pin)
• SERDES2 (60-pin)
• ISD/ISP (10-pin)

Another DB9 connector (female) can be added to the board for
modem communication.

3.4.3 Prototype Area
All I/O pins are brought to the prototype area to allow design
expansion. Care must be exercised since many of the I/O pins are
used elsewhere on the board.

The prototype area has DGND, 3.3V, and 5V rails. The prototype
area is 26 by 18 plated-through holes.

3.4.4 Daughter Board Connectors (J3, J4)
Two 60-pin interface connectors are provided on the IP2022
Demo Board for the purpose of interfacing to Daughter Boards.
SerDes 1 is connected to J3 and SerDes 2 is connected to J4.
Caution must be observed with SW1 (LED bank switch), because
Port B is connected to J3 and J4.
www.ubicom.com 23

Evaluation Kit and Demo Board—IP2022 Getting Started
Table 3-2 SERDES1 (J3) Pin Assignments
Pin Signal Pin Signal Pin Signal Pin Signal
1 UNREG_PWR 16 RB4 31 RD1 46 RE7
2 +5V 17 RB5 32 RD2 47 DGND

3 +5V 18 RB6 33 RD3 48 RG0

4 +3.3V 19 RB7 34 RD4 49 RG1
5 +2.5V 20 DGND 35 RD5 50 RG2

6 DGND 21 RC0 36 RD6 51 RG3

7 RA0 22 RC1 37 RD7 52 RG4
8 RA1 23 RC2 38 DGND 53 RG5

9 RA2 24 RC3 39 RE0 54 RG6

10 RA3 25 RC4 40 RE1 55 RG7
11 DGND 26 RC5 41 RE2 56 DGND

12 RB0 27 RC6 42 RE3 57 +2.5V

13 RB1 28 RC7 43 RE4 58 +5V
14 RB2 29 DGND 44 RE5 59 +3.3V

15 RB3 30 RD0 45 RE6 60 +3.3V
24 www.ubicom.com

IP2022 Getting Started—Evaluation Kit and Demo Board
Table 3-3 SERDES2 (J4) Pin Assignments
Pin Signal Pin Signal Pin Signal Pin Signal
1 UNREG_PWR 16 RB4 31 RD1 46 RF7
2 +5V 17 RB5 32 RD2 47 DGND

3 +5V 18 RB6 33 RD3 48 RG0

4 +3.3V 19 RB7 34 RD4 49 RG1
5 +2.5V 20 DGND 35 RD5 50 RG2

6 DGND 21 RC0 36 RD6 51 RG3

7 RA0 22 RC1 37 RD7 52 RG4
8 RA1 23 RC2 38 DGND 53 RG5

9 RA2 24 RC3 39 RF0 54 RG6

10 RA3 25 RC4 40 RF1 55 RG7
11 DGND 26 RC5 41 RF2 56 DGND

12 RB0 27 RC6 42 RF3 57 +2.5V

13 RB1 28 RC7 43 RF4 58 +5V
14 RB2 29 DGND 44 RF5 59 +3.3V

15 RB3 30 RD0 45 RF6 60 +3.3V
www.ubicom.com 25

Evaluation Kit and Demo Board—IP2022 Getting Started
3.4.5 Test Points
Several test points are available on the IP2022 Demo Board, as
listed in Table 3-4.

3.5 Board Configuration Options
The jumpers are used to connected common hardware blocks to
the IP2022. The SerDes 1 and 2 can be connected to a variety of
devices. Caution should be observed such that multiple devices
are not connected to the same SerDes unit.

Table 3-4 Test Points
Test Point Description

UNREG 12V, 800 mA DC input from wall-mount
adapter

+5V 5V output from switching power supply

+3.3V +3.3V output from switching power supply
+2.5D +2.5V output referenced to digital ground

+2.5A +2.5V output referenced to analog ground

Vref ADC +2.5V reference voltage for ADC
DGND Digital ground

AGND Analog ground

OSC 4 MHz clock signal
RTCLK 32.768 kHz clock signal
26 www.ubicom.com

IP2022 Getting Started—Evaluation Kit and Demo Board
3.5.1 RS232 (JP15-JP23)
The DCE_TXD and DCE_RXD jumpers are connected to SerDes
2 of the IP2022. The DTE_TXD and DTE_RXD jumpers are
connected to SerDes 1 of the IP2022. RTS and CTS are
connected to Port C for flow control.

For PC communications:

1. Use the PC DB9 connector.
2. Install the jumpers for DCE_TXD and DCE_RXD.
3. If hardware flow control is required, install the jumpers for

DCE_RTS and DCE_CTS.

For Modem communications:

1. Use Modem DB9 connector.
2. Install the jumpers for DTE_TXD and DTE_RXD.
3. Install the jumpers for DTE_RTS, DTE_CTS, and

DTE_DCD, according to the requirements for the modem
that is connected.

3.5.2 I2C (JP1, JP3, JP6)
All jumpers must be in place for I2C connection. These jumpers
connect the EEPROM (slave) to the SerDes 1 of the IP2022
(master).
www.ubicom.com 27

Evaluation Kit and Demo Board—IP2022 Getting Started
3.5.3 SPI (JP2, JP4, JP5, JP7)
All SPI jumpers must be in place for SPI interface. These jumpers
connect the temperature sensor (slave) to the SerDes 1 of the
IP2022 (master).

3.5.4 IOVDD (JP13)
IOVDD can be selected to be 2.5V or 3.3V.

3.5.5 Tool VDD (JP24)
These jumpers are not used with the supplied ISP/ISD cable.
Debuggers and programmers have the option of using the board’s
2.5V or 3.3V supplies, however be sure the Demo Board power
and the debugger or programmer power are compatible before
installing this jumper.

3.5.6 Clock (JP14)
Jumper connects the 4 MHz crystal to OSC1.

3.5.7 RTCLK (JP12)
Jumper connects the 32.768 kHz crystal to RTCLK1.
28 www.ubicom.com

IP2022 Getting Started—Evaluation Kit and Demo Board
3.5.8 4-Bit DIP Switch (JP8-JP11)
The jumpers labeled CFG0 to CFG3 connect the CONFIG
switches to Port A in the following way:

CFG0 = RA0
CFG1 = RA1
CFG2 = RA2
CFG3 = RA3.

3.5.9 Run LED (JP26)
The jumper labeled RUN directly below the RUN LED connects
the LED to pin 6 of the Port G.
www.ubicom.com 29

Evaluation Kit and Demo Board—IP2022 Getting Started
30 www.ubicom.com

4.0 Unity User Interface

Unity implements a powerful graphical user interface (GUI) that
trims the rough edges off the GNU tool chain. Even though
standard utilities such as make and gdb are running at some level
of the software development environment, Unity presents a simple
and intuitive front-end to these tools that does not require reading
hundreds of pages of documentation before getting started. A
project can be written, compiled, and debugged without ever
looking at a makefile or a linker script file.

The main software development interface which accounts for most
of the time spent working in Unity is the integrated source-code
editor/debugger, however there are two other modes which are
used for short periods:

• Project Configuration—used once when the project is started,
and used again whenever there is a change in the hardware
configuration or ipModule usage. This mode is discussed in
Chapter 5.

• Device Programming—used to download new programming
to the target. This mode is discussed in Chapter 8.

Figure 4-1 shows a view of the default appearance of the Unity
GUI. Windows used for project management and source file
editing usually occupy the upper pane of the Unity GUI, and
windows related to debugging occupy the lower pane. However,
www.ubicom.com 31

Unity User Interface—IP2022 Getting Started
Unity allows considerable flexibility in organizing the windows,
including the ability to drag a window out of the Unity GUI and onto
the desktop.

Figure 4-1 Unity (Default View)

Menu Bar Tool Bar

Memory

Workspace Window

Stack
Windows Window

Register
Window

Watch
Window

Output
Window
32 www.ubicom.com

IP2022 Getting Started—Unity User Interface
4.1 Unity Windows
The default view has up to seven open windows:

• Workspace Window—lists the source files within the current-
project. Clicking on a file name opens the file in a new window.

• Memory Windows—display regions of the program flash, pro-
gram RAM, and data memory space.

• Stack Window—shows the nesting of subroutines on the hard-
ware call/return stack.

• Register Window—displays the contents of the registers. The
contents of the registers can be edited in this window.

• Watch Window—shows the current value of expressions.
• Output Window—shows compilation output, such as error

messages.

On small screens, the Watch and Output windows might not
appear in the default view unless the window is maximized. The
default view can be restored by exiting Unity and selecting the
ubicom -> Unity -> UnityReset command.

4.2 Unity Menu Bar
The menu bar is used to access the Unity commands:

• File Menu—New, Open, Close, Save, and Print commands for
source files. These commands do not affect Unity project files.

• Edit Menu—Cut, Copy, Paste, and Find commands.
• View Menu—commands for showing or hiding any of the Unity

windows and other parts of the GUI.
www.ubicom.com 33

Unity User Interface—IP2022 Getting Started
• Project Menu—commands for creating a new project file or
opening an existing project file. Also has commands for gen-
erating an HTML version of the source files and accessing a
version control mechanism.

• Build Menu—commands for controlling compilation, entering
debugging mode, and launching the IP2KProg utility.

• Tools Menu—commands for setting compilation defaults (op-
timization level, etc.) and entering project configuration mode.
Also used to change font in source file windows (default size
is 12 point).

• Help Menu—commands to access on-line documentation for
the SDK distribution and the GNUPro tools.

4.3 Unity Tool Bar
The Tool bar has synonyms for the most frequently used
commands. The File menu synonyms are:

• New Source File—create a new source file. Equivalent to the
File -> New command.

• Open Source File—open an existing source file. Equivalent to
the File -> Open command.

• Save Source File—save current source file. Equivalent to the
File -> Save command.
34 www.ubicom.com

IP2022 Getting Started—Unity User Interface
• Save All Source Files—save all modified source files. Equiva-
lent to the File -> Save All command. This command saves
both ipModule source files and project-specific source files.

The Edit menu synonyms are:

• Cut Selection—delete selected text and save on the clipboard.
Equivalent to the Edit -> Cut command.

• Copy Selection—save selected text on the clipboard. Equiva-
lent to the Edit -> Copy command.

• Paste Clipboard—insert contents of the clipboard at the cur-
rent selection point. Equivalent to the Edit -> Paste command.

• Print Selection—print selected source file. Equivalent to the
Edit -> Copy command.

A Help menu synonym is:

• About—display copyright notice and version number. Equiva-
lent to the Help -> About Unity command.

The Build menu synonyms are:

• Compile Project—invoke the GNUPro tool chain to compile
the source files and create an executable file (.elf exten-
sion). Equivalent to the Build -> Compile command or the F7
function key. Only files which have changed or depend on files
which have changed are recompiled. To force Unity to recom-
pile every file, select the Build -> Clean command to delete all
www.ubicom.com 35

Unity User Interface—IP2022 Getting Started
temporary files and directories used in the compilation, such
as object files.

• Debug Project—Start a debugging session. Equivalent to the
Build -> Debug command or the F5 function key. A suitable
target such as the Demo Board must be available to start a de-
bugging session.

• Start Programmer—launch the IP2KProg utility. Equivalent to
the Build -> Start Programmer command or the F4 function
key.

• Toggle Breakpoint—sets or clears breakpoint at the insertion
point in the current open source file. Equivalent to the Build -
> Toggle Breakpoint command or the F9 function key.

The View menu synonyms are:

• Toggle Workspace Window—show or hide the Workspace
window. Equivalent to the View -> Workspace command. The
Workspace window displays a list of the source files in the cur-
rent project. Clicking on a file name opens that file for editing
in a new window.

• Toggle Output Window—show or hide the Output window.
Equivalent to the View -> Output command. The Output win-
dow displays the output from compiling a project, including er-
ror messages. The last line of the output will say either “Build
succeeded” or “Build failed”.
36 www.ubicom.com

IP2022 Getting Started—Unity User Interface
• Toggle Registers Window—show or hide the Registers win-
dow. Equivalent to the View -> Registers command. The Reg-
isters window is used to view and edit the contents of the CPU
and peripheral registers.

• Toggle Memory 1 Window—show or hide the Memory 1 win-
dow. Equivalent to the View -> Memory 1 command. The
Memory 1 window is used to view the contents of an 80-byte
region in program flash, program RAM, or data memory.

• Toggle Memory 2 Window—provided to view a second region
of memory. Equivalent to the View -> Memory 2 command.

• Toggle Watch Window—show or hide the Watch window.
Equivalent to the View -> Watch command. The Watch win-
dow shows the current values of user-specified expressions.

• Toggle Stack Window—show or hide the Stack window. Equiv-
alent to the View -> Stack command. The Stack window lists
the subroutines on the hardware call/return stack.

One icon is not a synonym for any menu command:

• Disassemble Window—show source code interleaved with
the corresponding assembly language instructions. To see
any output in this window, start a debugging session and use
one of the Step icons.
www.ubicom.com 37

Unity User Interface—IP2022 Getting Started
There are additional tool bar icons which are only enabled during
a debugging session. These icons are discussed in Chapter 7.

4.4 Creating a New Project
New projects are started by copying one of the existing project
templates. The starter example is a minimal Unity project
which runs a binary counter on the bank of eight LEDs on the
Demo Board and echoes characters received on the PC serial port
back to the host PC. For applications using complex ipModule
packages such as the Internet protocol stack, working
demonstration programs are provided for use as templates.

To create a new project from the starter template:

1. Enter Unity—select the ubicom -> Unity command. This
opens the Unity IDE. The first time Unity is opened after in-
stallation, an example assembly language project will open,
but it is not used in this chapter.

2. Enter Project File Full Path Name—click on New Project. A
dialog box will appear for entering the path name for the
project file. Click on • • • to browse for the project file. Any le-
gal full path name (with no embedded spaces) may be used.
In this example, the project file name is C:\start-
er\starter.c_c. Leave the file type selection as SDK.
(Choosing General would create the new project file immedi-
ately, without copying any of the template or default files into
the project.) Click the OK button.
38 www.ubicom.com

IP2022 Getting Started—Unity User Interface
3. Select New Project Template—in the list that is presented,
click on starter. The other names in the list are demon-
stration programs for complex ipModule packages such as
Ethernet communications. Leave the Add SDK Files Into
Project box unchecked. (Checking the box causes the in-
cluded ipModule software to appear in the list of project
files.) Click the OK button. Unity returns to the default view,
but now the starter project is displayed in the Workspace
window. At this point, the project file C:\start-

er\starter.c_c has been created, and several files and
directories have been copied to C:\starter.

4.5 Adding and Removing Files
To add a file to a project, select the Project -> Add file(s) command
or hit the Insert key, then browse for the file. Unity will
automatically add references to the new file in the
app/Makefile.inc file.

To remove a file from a project, click the right mouse button over
the file name in the Workspace window and select the Remove
command from the pop-up menu, or hit the Delete key and click
the Yes button when Unity asks to confirm removing the file.
www.ubicom.com 39

Unity User Interface—IP2022 Getting Started
4.6 Project File Tree
This is the structure of the C:\starter file tree, before
compiling the project or after using a Build -> Clean command:

starter—example project using the Demo Board

app—source files for the project

main.c—C source file
Makefile.inc—source directory makefile

config—configuration files

config.h—macro definitions for C compiler
config.mk—macro definitions for make utility

starter.lpj—project configuration file

Makefile—top-level project makefile
starter.c_c—project file
40 www.ubicom.com

5.0 Configuring ipModules

From the user’s perspective, ipModule software consists of
packages and configuration points. A package is a set of related
functions, declarations, etc. that is managed as a group, such as
the ipOS operating system or the TCP/IP Internet protocol stack.
A configuration point is a customizable option within a package,
such as the baud rate of a UART. A user-friendly graphical user
interface (GUI) is used to select packages and customize
configuration points.

The package selections and configuration point settings are saved
in a project configuration file (.lpj extension). This information is
used to generate the config.mk and config.h macro
definition files, which control the inclusion of packages into a
project during compilation.
www.ubicom.com 41

Configuring ipModules—IP2022 Getting Started
5.1 Project Configuration GUI

Figure 5-1 Project Configuration GUI

There are three panes in the window: the left pane shows the
packages and configuration points in a project, the upper right

Menu Bar Tool Bar
42 www.ubicom.com

IP2022 Getting Started—Configuring ipModules
pane shows symbolic definitions for configuration points, and the
lower right pane shows comments. The right panes are protected
against modification unless the Package -> Designer Mode
command is used to disable protection. Most package users will
only need to make changes that affect the left pane, such as
toggling check boxes and entering constants into value fields.

The menu bar at the top of the window may be used to access all
of the project configuration commands. Frequently used
commands are more conveniently accessed from the tool bar. The
four menus on the menu bar are:

• File—opens, closes, and saves project files.
• Edit—removes a package from the project file (Edit -> Delete

Node command).
• Package—adds and deletes packages from the project file,

generates config.mk and config.h files, and specifies
the directory for searching for packages.

• Help—provides access to on-line documentation.

The tool bar icons are synonyms for the most commonly used
menu commands:

• Create New Project—create a new project file. Equivalent to
the File -> New command.

• Open Existing Project—open an existing project file. Equiva-
lent to the File -> Open command.
www.ubicom.com 43

Configuring ipModules—IP2022 Getting Started
• Save Current Project—save changes to the project file. Equiv-
alent to the File -> Save command.

• Generate—generate the config.mk and config.h files.
Equivalent to the Package -> Generate command.

• Help—access to on-line documentation for Configuration
Tool. Equivalent to the Help -> Help Contents command.

5.2 Generating Makefiles and Header Files
The following steps demonstrate using Configuration Tool to
generate the config.h and config.mk files for the
starter project.

1. View Project Configuration—select the Tools -> Configure
command. Packages are added with the Package -> Add
Package command. A package is removed by clicking on the
package name and selecting the Edit -> Delete Node com-
mand.

2. Generate Configuration Files—either select the Package ->
Generate command or click the Generate icon. If the files
were generated, “Configuration generated successfully” will
appear below the left pane. If there was a problem (e.g. a file
cannot be found in the search path), a dialog box reports “Un-
able to create file”.
44 www.ubicom.com

6.0 Compiling

Compiling is a batch process which can be performed at any time,
except during a debugging session. Compiling produces an
executable file (.elf extension), which is run by downloading the
file to a target such as the Demo Board.

The current project is compiled by clicking the Compile icon or
hitting the F7 function key. Changes to any open project source
files are saved immediately, without requesting confirmation from
the user. During a compilation, the project source files are
compiled with the GNU C compiler gcc, and the resulting object
files are linked with the GNU linker ld to produce a .elf file. The
command lines which invoke the GNUPro tools are visible in the
Output window, but most users may ignore them. The important
information displayed in the Output window are error messages
that occur during compilation, which indicate the source file name
and line number at which the error is indicated. The last line in the
Output window will say either “Build succeeded” or “Build failed”.

The make utility is used to manage the compilation and linking of
files, both to automate the process and to avoid unnecessary
recompilation of source files. For example, if a project contains five
source files but only one file is modified, it may be possible to
generate a new executable file by recompiling only one source file
and linking the resulting object file with four previously generated
www.ubicom.com 45

Compiling—IP2022 Getting Started
object files. If the modified source file is a header file included in
the other four source files, however, it will be necessary to
recompile all of the source files. The make utility keeps track of file
dependencies and invokes the compiler and linker as needed to
generate the files requested by the user.

To force make to recompile all files, select the Build -> Clean
command to remove all temporary files, such as object files. Then,
compile the project in the usual way.

A makefile is a command file for the make utility. Makefile in
the project directory is the top-level makefile of the project. When
compilation is triggered, Unity calls make to execute Makefile,
as shown in Figure 6-1. Makefile calls two other makefiles, the
config.mk file generated by Unity from the project
configuration and the global makefile Makefile.inc in the
sdk/scripts directory (one of the directories created by the
SDK installation). The global makefile calls the Makefile.inc
in the source files directory app and the Makefile.inc for
each ipModule included in the project. All of the makefiles used to
compile a project are either generated by Unity or supplied by
Ubicom, so most users will not need to write or edit any makefiles.
46 www.ubicom.com

IP2022 Getting Started—Compiling
Figure 6-1 Makefile Structure

515-086.eps

Makefile

Global

Makefile
sdk/scripts
/Makefile.inc

config.mk

Project

Makefile

Configuration

Makefile

Makefile.inc.c

Project

Makefile.inc.c

ipModule

Makefile.inc.c

ipModule

Unity

IDE
www.ubicom.com 47

Compiling—IP2022 Getting Started
48 www.ubicom.com

7.0 Debugging

A debugging session can be started if an executable file and a
target are available. Click the Debug Project icon or hit the F5
function key to start a debugging session. During a debugging
session, the current project cannot be compiled, and another
project cannot be opened.

To exit from the debugging session while a program is running on
the target, click the Stop icon once to stop the program and a
second time to exit the debugger. If the target is already stopped,
only one click is needed to exit the debugging session.

7.1 Debugging Tool Bar
Several tool bar icons are only useful during a debugging session:

• Toggle Breakpoint—sets or clears breakpoint at the insertion
point in the current open source file. Equivalent to the Build -
> Toggle Breakpoint command or the F9 function key.

• Continue—start or continue program execution. Equivalent to
the Build -> Continue command or the F6 function key.
www.ubicom.com 49

Debugging—IP2022 Getting Started
• Step—advance program execution by one source code line.
Equivalent to the Build -> Step command or the F11 function
key.

• Next—advance program execution by one source code line of
the current function. Calls to other functions are executed
without stopping until they return to the current function.
Equivalent to the Build -> Next command or the F10 function
key.

• Up—finish execution of the current function and stop after re-
turning to the calling function. Equivalent to the Build -> Con-
tinue command or Shift plus the F11 function key.

• Reset—reset target. Equivalent to the Build -> Reset com-
mand.

• Automated Step—like the Step icon, but with automatic repeat
a little faster than once per second. Click once to begin repeat
mode, and click a second time to end it.

• Automated Next—like the Next icon, but with automatic repeat
a little faster than once per second. Click once to begin repeat
mode, and click a second time to end it.

• Assembler Step—advance program execution by one instruc-
tion. Click the Disassemble Window icon to view instructions.
50 www.ubicom.com

IP2022 Getting Started—Debugging
• Assembler Next—advance program execution by one instruc-
tion. Calls to other functions are executed without pausing un-
til they return to the current function.

• Stop—if a program is running on the target in a debugging
session, stop program execution. Otherwise, terminate de-
bugging session. A debugging session must be terminated to
recompile the project. Equivalent to the Build -> Stop com-
mand.

• Quick Watch—add expression to Watch window.

• Toggle Registers Window—show or hide the Registers win-
dow. Equivalent to the View -> Registers command. The Reg-
isters window is used to view and edit the contents of the CPU
and peripheral registers.

• Toggle Memory 1 Window—show or hide the Memory 1 win-
dow. Equivalent to the View -> Memory 1 command. The
Memory 1 window is used to view the contents of an 80-byte
region in program flash, program RAM, or data memory.

• Toggle Memory 2 Window—provided to view a second region
of memory. Equivalent to the View -> Memory 2 command.
www.ubicom.com 51

Debugging—IP2022 Getting Started
• Toggle Watch Window—show or hide the Watch window.
Equivalent to the View -> Watch command. The Watch win-
dow shows the current values of user-specified expressions.

• Toggle Stack Window—show or hide the Stack window. Equiv-
alent to the View -> Stack command. The Stack window lists
the subroutines on the hardware call/return stack.

• Disassemble Window—show source code interleaved with
the corresponding assembly language instructions. No output
is shown in this window until one of the Step icons is used.

7.2 Viewing Program Execution
For the following procedure, it is assumed that a target and an
executable file for the current project are available.

1. Enter the Debugger—click the Debug Project icon or hit the
F5 function key. Unity will connect to the target system. In the
default configuration, Unity then downloads and runs the exe-
cutable file on the target. To change the default behavior of
Unity, select the Tools -> Options command, then select the
Debugger tab. A binary counter begins incrementing on the
bank of eight LEDs on the Demo Board.

2. Stop the Program—click the Stop icon to halt execution.
Unity opens a source file window for the line which was
about to be executed, which is highlighted in color in the
center of the source file window.
52 www.ubicom.com

IP2022 Getting Started—Debugging
3. Advance Program Execution—click the Step icon several
times to advance program execution line-by-line. Because
the starter application calls functions in several source
files, the debugger frequently jumps among these files while
stepping through code.
Click the Automated Step icon to watch program execution
continue at a speed slightly faster than one line per second.
Code in the source file main.c frequently calls code in
uart_vp.c and timer.c, the UART and timer ipModules,
so the view jumps among these source file windows. Exit this
mode by clicking the Automated Step icon a second time.
Click the Automated Next icon. Next differs from Step in that
functions are executed without pausing until they return to the
calling function. In this mode, functions return to the main
loop, and the main loop stays in the front window. Exit this
mode by clicking the Automated Next icon a second time.

4. Open Disassemble Window—click the Disassemble Win-
dow icon to open a new window for displaying source lines
interleaved with their corresponding instructions.

5. Advance Program Execution—the Disassemble window
does not display any output until program execution is ad-
vanced, either by incremental advances with a command
like Step or Next or by hitting the Continue icon followed by
hitting the Stop icon or encountering a breakpoint.
www.ubicom.com 53

Debugging—IP2022 Getting Started
7.3 Breakpointing Program Execution
For the following procedure, it is assumed that a debugging
session has been entered, as described in Section 7.2. A
breakpoint will be set in the led_callback routine which
changes the pattern of lights on the LED bank of the Demo Board.
This routine is called by a one-shot timer when it expires. To insure
that the call is repeated, one of the functions performed by the
routine is to reattach itself to the list of timers serviced by the ipOS
operating system.

1. Reset the Target—click the Reset icon to stop program exe-
cution on the target and reset the program counter.

2. Browse for the led_callback Function—click the
Browse tab in the Workspace window. If the Browse tab is
empty, click the Stop icon to exit debugging mode, click the
Compile icon to recompile the project, click the Debug
Project icon to re-enter the debugging session, and click the
Reset icon to stop execution. Immediately after recompiling,
the Browse tab displays the functions of the starter
project, as shown in Figure 7-1.
54 www.ubicom.com

IP2022 Getting Started—Debugging
Figure 7-1 Browse Tab

Double-click on led_callback to open the source file
main.c. The first line of the led_callback function will
be highlighted in the source file window.

3. Set a Breakpoint—click on the line that says (*led)++;.
Click the Toggle Breakpoint icon to set a breakpoint. A red
circle appears in the gray bar along the left edge of the
source file window to indicate a breakpoint has been set, as
shown in Figure 7-2. Only one breakpoint can be set in pro-
gram flash memory. Any number of breakpoints can be set
in program RAM. Select the View -> Breakpoint List com-
mand to examine the breakpoints which have been set.
www.ubicom.com 55

Debugging—IP2022 Getting Started
Figure 7-2 Setting a Breakpoint

4. Continue Program Execution—click the Continue icon to be-
gin program execution. Immediately, the program will stop
at the breakpoint. Continue clicking the Continue icon. For
each click, the pattern on the LED bank is incremented.

5. Examine Stack Window—the Stack window is a read-only
display of the subroutines which have been pushed on the
hardware stack. With the starter example stopped in
led_callback, the stack window appears as shown in
Figure 7-3.
56 www.ubicom.com

IP2022 Getting Started—Debugging
Figure 7-3 Stack Window

main is the top-level function of the starter example, so it
is the deepest function on the stack. timer_poll is called
in the main loop of main, to update any timers that ipOS is
maintaining. timer_poll calls oneshot_tick to update
any one-shot timers. If the timer for incrementing the pattern
of lights on the LEDs has expired, oneshot_tick calls
led_callback.
www.ubicom.com 57

Debugging—IP2022 Getting Started
7.4 Viewing Registers
To view the registers of the starter example as it executes:

1. Scroll to rbin and rbout—scroll down the Registers win-
dow until the rbin and rbout registers are displayed, as
shown in Figure 7-4. rbout is the output register for the
port which drives the LED bank, and rbin is the input reg-
ister for that port.

Figure 7-4 Registers Window

2. Continue Execution—click the Continue icon to run the pro-
gram until the breakpoint is hit again. When a register value
changes between steps, it is highlighted with color in the
Registers window. The rbout register is incremented and
58 www.ubicom.com

IP2022 Getting Started—Debugging
read back into the rbin register on every click of the Con-
tinue icon, so the values in these registers are highlighted
after each click.

7.5 Viewing Memory
The expression *led is a pointer to data driven on the LED bank.
The Watch window can be used to display both the pointer and the
data.

1. Specify Watch Expressions—click the Quick Watch icon to
bring up a box for specifying a watch expression.

Figure 7-5 Quick Watch Box

Enter led and click the Add button. Then, click the Quick
Watch icon again, enter *led, and click the Add button. At
www.ubicom.com 59

Debugging—IP2022 Getting Started
this point, both led and *led have been added to the Watch
window, as shown in Figure 7-6.

Figure 7-6 Watch Window

The value in led is 0x1000FF9, which is the address of the
data that starter loads in the rbout register. The ad-
dresses used by the debugger have a different mapping than
those used in source files, as discussed in Section 7.6. The
value in *led shows the data itself. Click the Continue icon to
increment the data.

2. Examine Memory—click the address box in one of the
Memory windows, and change it to 0x01000FB0. A Memory
window presents a fixed display of 80 characters, and it will
not display any characters if one of them is in a reserved
section of the memory space. Because a reserved section
starts at 0x01001000, the address 0x01000FF9 cannot be
used to view memory. However, the reserved section can be
avoided by entering 0x01000FB0 into the address box, as
shown in Figure 7-7. The data at address 0x01000FF9 is 03
in the second data column on the last line.
60 www.ubicom.com

IP2022 Getting Started—Debugging
Figure 7-7 Memory Window

ASCII character equivalents of the data are shown in the column
on the right.
www.ubicom.com 61

Debugging—IP2022 Getting Started
7.6 Memory Map
A map of the memory space as viewed through the debugger is
shown in Figure 7-8. This address mapping is only used in the
.elf files generated by the linker and analyzed in the debugger.
Do not use these addresses in C source files.

Figure 7-8 Debugging Memory Space

515-078.eps

Special-Purpose Registers

Global Registers

0x1000000

0x1000080

Data Memory

0x1001000

Program RAM
0x2000000

Program Flash Memory

Configuration Block
0x202007F

0x1000100

Byte
Address

Reserved

Reserved

0x2004000

0x2010000

0x2020000
62 www.ubicom.com

8.0 Utilities

An executable file (.elf extension) can be downloaded to a
target using the IP2KProg utility. IP2KProg can be used to:

• Read the software for an IP2022 device from a .elf file
• Read the software for an IP2022 device from the flash memo-

ry of a programmed device
• Edit the software in hexadecimal
• Download the software to an IP2022 device

After downloading, IP2KProg resets the IP2022, and the
software begins running.

From within Unity, IP2KProg is launched by clicking the Start
Programmer icon, selecting the Build -> Start Programmer
command, or hitting the F4 function key. IP2KProg will load the
executable file of the current project. An executable file must be
available, otherwise Unity will not launch IP2KProg.

Although Unity will not launch IP2KProg during a debugging
session, it is possible to enter a debugging session after launching
IP2KProg. This is not recommended, because it causes loss of
synchronization between the Demo Board and the software on the
host PC.

IP2KProg can also be run as a standalone program by selecting
the ubicom -> Ip2kprog command. In this case, IP2KProg is
www.ubicom.com 63

Utilities—IP2022 Getting Started
launched with a blank memory buffer. Do not download a blank
buffer to the Demo Board.

Be careful to avoid overwriting configuration block settings in a
way that prevents the IP2022 device from functioning. In
particular, the OSC oscillator is the only clock source available on
the Demo Board. If the XTAL bit disables the OSC oscillator, the
Demo Board will not be operational and any further attempts to
program the IP2022 device will be unsuccessful until an external
clock source is provided.
64 www.ubicom.com

IP2022 Getting Started—Utilities
8.1 IP2KProg User Interface

Figure 8-1 IP2KProg User Interface

Clicking the Erase button disables the Demo Board. Do not touch!

Check The XTAL Box!

Do Not Touch The Erase Button!
www.ubicom.com 65

Utilities—IP2022 Getting Started
IP2KProg keeps a memory buffer of the program memory and
configuration block. A hexadecimal listing of this memory buffer is
shown on the left. Addresses are listed as word addresses. The
data in the memory buffer can be edited by typing over any
previous values.

The configuration block settings are shown to the right of the
program memory space. Be sure to check the XTAL box to enable
the OSC oscillator before downloading to the Demo Board.

The memory buffer can be downloaded to both the program
memory and the configuration block by clicking the Program
button. An erase cycle occurs before programming, so it is not
necessary to use the Erase button. Clicking the Erase button
disables the Demo Board. The memory buffer can be downloaded
to the configuration block alone by clicking the PgmFuses button.

The memory buffer can be reloaded by selecting the File -> Load
command and browsing for a .elf file. The buffer also can be
loaded from a programmed IP2022 device by clicking the Read
button. A list of the regions of memory loaded from the .elf file
may be viewed by selecting the Device -> Flash_allocation
command.

To navigate around the memory buffer, use the Goto menu to jump
to the beginning of any memory block or the configuration block.
66 www.ubicom.com

IP2022 Getting Started—Utilities
8.1.1 Downloading a Project
To download the starter example:

1. Launch IP2KProg—click the Start Programmer icon.
When launched from Unity, the executable file start-
er.elf is automatically loaded into the memory buffer.
To run IP2KProg as a standalone program, select the ubi-
com -> Ip2kprog command to launch IP2KProg. Then, se-
lect the File -> Load command to browse for the
starter.elf file.
Select the Goto -> Flash_0 command to navigate to the begin-
ning of the flash memory at word address 0x08000. The mem-
ory locations loaded from the starter.elf file are
highlighted in green.

2. Download the Executable File—click the Program button to
download the contents of the memory buffer to the IP2022
device. After downloading, IP2KProg resets the target and
the software begins running. The pattern of lights on the
LED bank begins incrementing. If a serial cable is connect-
ed, a serial communications program such as Hyperterminal
can be used to demonstrate that characters are being ech-
oed by the Demo Board.

3. Verify the Download—click the Verify button to check that
the download was successful. To provoke a mismatch dur-
ing verification, edit a memory location and click the Verify
button again. An mismatch report appears in a new window.
Hit a keyboard key to close the mismatch report window.

4. Exit IP2KProg—click the Close button.
www.ubicom.com 67

Utilities—IP2022 Getting Started
8.2 GNU Binary Utilities
The following utilities are available from an MS-DOS command
prompt window:

• ip2k-elf-objdump—with the -D argument, produces a disas-
sembly listing. With the -x argument, prints section informa-
tion (size, load address, etc.).

• ip2k-elf-readelf—with the -a argument, lists .elf file header
information, section header information, and the symbol table.

• ip2k-elf-size—lists the size of each section.
• ip2k-elf-nm—lists the symbol table.
• ip2k-elf-strings—lists any ASCII strings found in the file.

To open an MS-DOS command prompt window, select the MS-
DOS Command Prompt command from the Start menu. A new
window will open for submitting MS-DOS commands. The
ip2k-elf-objdump and ip2k-elf-readelf commands
require an argument. For a brief summary of the available
arguments, try the command without an argument. For detailed
information about the available arguments, see the binutils section
of the GNUPro Toolkit—GNUPro Utilities manual (pages 317 to
368).

Some of these utilities produce output that scrolls off the window.
The output can be run through the MS-DOS more utility to print
only as much output as can be seen in the window, as shown in
the following command line.

ip2k-elf-objdump -D starter.elf | more
68 www.ubicom.com

IP2022 Getting Started—Utilities
Hit the space bar to advance the output by one window of
information.

The output can also be directed to a file so that it can be viewed in
an editor. For example, the following command line places the
output in the file tmp.txt.

ip2k-elf-objdump -D starter.elf > tmp.txt
www.ubicom.com 69

Utilities—IP2022 Getting Started
70 www.ubicom.com

A.0 Assembly Language Syntax

This appendix briefly describes the assembly-language syntax
and the IP2022-specific features of the GNU assembler.

For a complete description of the non-IP2022-specific features of
the assembly-language syntax, see the GNUPro Toolkit—
GNUPro Utilities manual.

A.1 Comments, Constants, and Symbols
Comments can occur at the end of a line, after a pound sign (#) or
semicolon. The semicolon is recommended, as in:

clrb status,c ;this is a comment

;this whole line is a comment

Comments can also be enclosed in C-style comment delimiters,
such as:

/* this is a comment */

and:

/* this is

a multi-line

comment */

As with C, comments may not be nested.
www.ubicom.com 71

Assembly Language Syntax—IP2022 Getting Started
Constants may be character constants, string constants, or
numeric constants. A character constant is a single quote followed
by a character, such as ’f which is a byte with the value 102
(decimal) corresponding to its ASCII code. A string constant
consists of one or more characters enclosed in double quotes,
such as "Ubicom". To use a character with special meaning or
a character outside of the standard ASCII printing characters, a
backslash (\) is used to indicate a representation for the
character, as shown in Table A-1.

A numeric constant is an integer. By default, it is interpreted as a
decimal number. To express it in binary, prefix the value with 0b,

Table A-1 Special Characters
Representation Value Character

\b 0x08 Backspace (control-H)

\f 0x0C Form Feed (control-L)

\n 0x0A New Line (control-J)

\r 0x0D Carriage Return (control-M)

\t 0x09 Horizontal Tab (control-I)

\xNN 0xNN NN is the ASCII code for the
character, in hex. E.g. \x09
is equivalent to \t.

\\ 0x5C Backslash (\)

\" 0x22 Double Quote (")
72 www.ubicom.com

IP2022 Getting Started—Assembly Language Syntax
e.g. 0b01101001. To express it in hex, prefix the value with 0x,
as in 0x9F. Hex digits may be either upper or lower case.

A symbol is a name for any nameable object, such as labels and
constants. A symbol consists of one or more characters from the
set of letters, digits, period (.), and underscore (_). A symbol may
not begin with a digit. Symbols are case-sensitive, so abc is
distinct from aBc. Symbols may not be reserved words (see
Section A.6).

The assembler has two special constructs for recovering the
address of a symbol in data memory. %lo8data(symbol)
returns the low byte of the address of symbol, and
%hi8data(symbol) returns the high byte. These are useful
for initializing pointers used in the IPH/IPL, DPH/DPL, and
SPH/SPL registers. Another set of constructs,
%lo8insn(symbol) and %hi8insn(symbol), are used to
recover addresses in program memory. These are useful for
initializing pointers used in the ADDRH/ADDRL register.

A.2 Addressing Modes
The addressing modes are shown in Table A-2. For a more
detailed explanation of these modes, see Chapter 3 of the IP2022
User’s Manual. (The discussion in Chapter 3 covers the
addressing modes accessed with the "fr" operand field of the
instruction word, so it does not include immediate mode because
separate opcodes are used for those instructions that offer an
immediate mode operand.)
www.ubicom.com 73

Assembly Language Syntax—IP2022 Getting Started
Table A-2 Addressing Modes

Addressing Mode
Assembly
Language
Examples

Description

Immediate mov w,#0xff Immediate operand is the literal value
0xFF (i.e. 255 decimal).

Direct mov w,0xff

mov 0xff,w

Direct operand is the global register
at address 0xFF. Direct addressing
can only be used for addresses
between 0x01 and 0xFF (i.e. special-
purpose registers and global regis-
ters).

Indirect mov w,(ip)

mov (ip),w

Indirect operand is the location in
data memory addressed by the con-
tents of the IPH/IPL register.

Indirect with Offset,
Data Pointer

mov w,8(dp)

mov 8(dp),w

Indirect operand is the location in
data memory addressed by the con-
tents of the DPH/DPL register plus an
offset of 8. The offset is restricted to a
range of 0 to 255. The operand
address must be > 0x20.

Indirect with Offset,
Stack Pointer

mov w,8(sp)

mov 8(sp),w

Indirect operand is the location in
data memory addressed by the con-
tents of the SPH/SPL register plus an
offset of 8. The offset is restricted to a
range of 0 to 255. The operand
address must be > 0x20.
74 www.ubicom.com

IP2022 Getting Started—Assembly Language Syntax
A.3 Sections Used in Default Linker Script
The linker script file ip2kelf.ld defines the following sections:

• .gpr—general-purpose registers (addresses 0x80 to 0xFF)
• .data—preallocated, preinitialized data memory
• .text—flash memory
• .pram—program space allocated in program RAM
• .pram_data—data space allocated in program RAM
• .strings—strings stored in flash memory
• .reset—reset vector
• .config—configuration block
• .bss—storage for globals. Initialized to zero.

A.4 Summary of CPU Instructions

Table A-3 Key to Abbreviations and Symbols
Symbol Description

W Working register

fr File register field (an operand specified using direct addressing,
indirect addressing, or indirect-with-offset addressing)

PCL Virtual register for direct PC modification (direct address 0x09)
STATUS STATUS register (direct address 0x0B)

IPH Indirect Pointer High - Upper half of pointer for indirect address-
ing (direct address 0x04)

IPL Indirect Pointer Low - Lower half of pointer for indirect address-
ing (direct address 0x05)
www.ubicom.com 75

Assembly Language Syntax—IP2022 Getting Started
DPH Upper half of data pointer for indirect-with-offset addressing
(direct address 0x0C)

DPL Lower half of data pointer for indirect-with-offset addressing
(direct address 0x0D)

SPH Upper half of stack pointer for indirect-with-offset addressing
(direct address 0x06)

SPL Lower half of stack pointer for indirect-with-offset addressing
(direct address 0x07)

C Carry bit in the STATUS register (bit 0)
DC Digit Carry bit in the STATUS register (bit 1)

Z Zero bit in the STATUS register (bit 2

BO Brown-out bit in the STATUS register (bit 3)
WD Watchdog Timeout bit in the STATUS register (bit 4)

PA2:PA0 Page bits in the STATUS register (bits 7:5)

WDT Watchdog Timer counter and prescaler
, File register/bit selector separator (e.g. clrb status,z)

lit8 8-bit immediate operand (i.e. literal) in assembly language instruction

addr13 13-bit address in assembly language instruction
(address) Contents of memory referenced by address

| Logical OR

|| Concatenation
^ Logical exclusive OR

& Logical AND

!= inequality

Table A-3 Key to Abbreviations and Symbols
Symbol Description
76 www.ubicom.com

IP2022 Getting Started—Assembly Language Syntax
Table A-4 Logical Instructions
Assembler

Syntax
Pseudocode

Definition Description Flags
Affected

and fr,w fr = fr & W AND fr,W into fr Z
and w,fr fr = W & fr AND W,fr into W Z
and w,#lit8 W = W & lit8 AND W,literal into W Z

not fr fr = fr Complement fr into fr Z

not w,fr W = fr Complement fr into W Z
or fr,w fr = fr | W OR fr,W into fr Z
or w,fr W = W | fr OR W,fr into W Z
or w,#lit8 W = W | lit8 OR W,literal into W Z
xor fr,w fr = fr ^ W XOR fr,W into fr Z
xor w,fr W = W ^ fr XOR W,fr into W Z
xor w,#lit8 W = W ^ lit8 XOR W,literal into W Z

Table A-5 Arithmetic and Shift Instructions
Assembler

Syntax
Pseudocode

Definition Description Flags
Affected

add fr,w fr = fr + W Add fr,W into fr C, DC, Z
add w,fr W = W + fr Add W,fr into W C, DC, Z
add w,#lit8 W = W + lit8 Add W,literal into W C, DC, Z
addc fr,w fr = C + fr + W Add carry,fr,W into fr C, DC, Z
addc w,fr W = C + W + fr Add carry,W,fr into W C, DC, Z
clr fr fr = 0 Clear fr Z
www.ubicom.com 77

Assembly Language Syntax—IP2022 Getting Started
cmp w,fr fr - W Compare W,fr
then update STATUS

C, DC, Z

cmp w,#lit8 lit8 - W Compare W,literal
then update STATUS

C, DC, Z

cse w,fr if (fr - W) = 0
then skip

Compare W,fr then skip if
equal

None

cse w,#lit8 if (lit8 - W) = 0
then skip

Compare W,literal then
skip if equal

None

csne w,fr if (fr - W) != 0
then skip

Compare W,fr then skip if
not equal

None

csne w,#lit8 if (lit8 - W) != 0
then skip

Compare W,literal then
skip if not equal

None

cwdt WDT = 0 Clear Watchdog Timer None
dec fr fr = fr - 1 Decrement fr into fr Z
dec w,fr W = fr -1 Decrement fr into W Z
decsnz fr fr = fr - 1

if fr != 0 then skip
Decrement fr into fr then
skip if not zero (STATUS
not updated)

None

decsnz w,fr W = fr - 1
if fr != 0 then skip

Decrement fr into W then
skip if not zero (STATUS
not updated)

None

decsz fr fr = fr - 1
if fr = 0 then skip

Decrement fr into fr then
skip if zero (STATUS not
updated)

None

Table A-5 Arithmetic and Shift Instructions (continued)
Assembler

Syntax
Pseudocode

Definition Description Flags
Affected
78 www.ubicom.com

IP2022 Getting Started—Assembly Language Syntax
decsz w,fr W = fr - 1
if fr = 0 then skip

Decrement fr into W then
skip if zero (STATUS not
updated)

None

inc fr fr = fr + 1 Increment fr into fr Z
inc w,fr W = fr + 1 Increment fr into W Z
incsnz fr fr = fr + 1

if fr != 0 then skip
Increment fr into fr then
skip if not zero (STATUS
not updated)

None

incsnz w,fr W = fr + 1
if fr != 0 then skip

Increment fr into W then
skip if not zero (STATUS
not updated)

None

incsz fr fr = fr + 1
if fr = 0 then skip

Increment fr into fr then
skip if zero (STATUS not
updated)

None

incsz w,fr W = fr + 1
if fr = 0 then skip

Increment fr into W then
skip if zero (STATUS not
updated)

None

muls w,fr MULH || W = W × fr Signed 8 × 8 multiply (bit
7 = sign) W,fr into MULH ||
W

None

muls w,#lit8 MULH || W = W × lit8 Signed 8 × 8 multiply (bit
7 = sign) W,literal into
MULH || W

None

mulu w,fr MULH || W = W × fr Unsigned 8 × 8 multiply
W,fr into MULH || W

None

mulu w,#lit8 MULH || W = W × lit8 Unsigned 8 × 8 multiply
W,literal into MULH || W

None

Table A-5 Arithmetic and Shift Instructions (continued)
Assembler

Syntax
Pseudocode

Definition Description Flags
Affected
www.ubicom.com 79

Assembly Language Syntax—IP2022 Getting Started
rl fr fr || C = C || fr Rotate fr left through carry
into fr

C

rl w,fr W || C = C || fr Rotate fr left through carry
into W

C

rr fr C || fr = fr || C Rotate fr right through
carry into fr

C

rr w,fr C || W = fr || C Rotate fr right through
carry into W

C

sub fr,w fr = fr - W Subtract W from fr into fr C, DC, Z
sub w,fr W = fr - W Subtract W from fr into W C, DC, Z
sub w,#lit8 W = lit8 - W Subtract W from literal

into W
C, DC, Z

subc fr,w fr = fr - C - W Subtract carry,W from fr
into fr

C, DC, Z

subc w,fr W = fr - C - W Subtract carry,W from fr
into W

C, DC, Z

swap fr fr = fr3:0 || fr7:4 Swap high and low nib-
bles of fr into fr

None

swap w,fr W = fr3:0 || fr7:4 Swap high and low nib-
bles of fr into W

None

test fr if fr = 0 then Z = 1
else Z = 0

Test fr for zero and update
Z

Z

Table A-5 Arithmetic and Shift Instructions (continued)
Assembler

Syntax
Pseudocode

Definition Description Flags
Affected
80 www.ubicom.com

IP2022 Getting Started—Assembly Language Syntax
Table A-6 Bit Operation Instructions
Assembler

Syntax
Pseudocode

Definition Description Flags
Affected

clrb fr.bit fr.bit = 0 Clear bit in fr None
sb fr.bit if fr.bit = 1 then skip Test bit in fr then skip if

set
None

setb fr.bit fr.bit = 1 Set bit in fr None
snb fr.bit if fr.bit = 0 then skip Test bit in fr then skip if

clear
None

Table A-7 Data Movement Instructions
Assembler

Syntax
Pseudocode

Definition Description Flags
Affected

mov fr,w fr = W Move W into fr None
mov w,fr W = fr Move fr into W Z
mov w,#lit8 W = lit8 Move literal into W None
push fr (SP) = fr

SP = SP - 1
Move fr onto top of stack None

push #lit8 (SP) = lit8
SP = SP - 1

Move literal onto top of
stack

None

pop fr SP = SP + 1
fr = (SP)

Move top of stack into fr None
www.ubicom.com 81

Assembly Language Syntax—IP2022 Getting Started
Table A-8 Program Control Instructions
Assembler

Syntax Description Flags
Affected

call addr13 Call subroutine None
jmp addr13 Jump None
int Software interrupt None
nop No operation None
ret Return from subroutine PA2:0
reti #lit3 Return from interrupt All
retw #lit8 Return from subroutine with literal into W PA2:0

Table A-9 System Control Instructions
Assembler

Syntax Description Flags
Affected

break Software breakpoint None
ferase Erase flash block None
fread Read from flash memory None
fwrite Write into flash memory None
iread Read from program memory None
iwrite Write into program RAM None
loadh addr16 Load high data address into DPH None
loadl addr16 Load low data address into DPH None
page addr16 Load page bits from program address PA2:0
speed #lit8 Change CPU speed from literal None
82 www.ubicom.com

IP2022 Getting Started—Assembly Language Syntax
A.5 Summary of CPU and Peripheral Registers

Table A-10 Register Addresses and Reset State

Address Name Description Reset
Value

0x0001 Reserved Reserved Reserved
0x0002 Reserved Reserved Reserved
0x0003 Reserved Reserved Reserved
0x0004 IPH Indirect Pointer (high byte) 00000000

0x0005 IPL Indirect Pointer (low byte) 00000000

0x0006 SPH Stack Pointer (high byte) 00000000

0x0007 SPL Stack Pointer (low byte) 00000000

0x0008 PCH Current PC bits 15:8 (read-only) 11111111

0x0009 PCL Virtual register for direct PC modifi-
cation

11110000

0x000A W W register 00000000

0x000B STATUS STATUS register On POR or
RST Reset:
11100000

On Brown-out
Reset:
11101000

On WDT
Overflow:
11110000

0x000C DPH Data Pointer (high byte) 00000000

0x000D DPL Data Pointer (low byte) 00000000
www.ubicom.com 83

Assembly Language Syntax—IP2022 Getting Started
0x000E SPDREG Current speed (read-only) 10010011

0x000F MULH Multiply result (high byte) 00000000

0x0010 ADDRH Program memory address (high
byte)

00000000

0x0011 ADDRL Program memory address (low byte) 00000000

0x0012 DATAH Program memory data (high byte) 00000000

0x0013 DATAL Program memory data (low byte) 00000000

0x0014 INTVECH Interrupt vector (high byte) 00000000

0x0015 INTVECL Interrupt vector (low byte) 00000000

0x0016 INTSPD Interrupt speed register 00000000

0x0017 RBINTF Port B interrupt flags 00000000

0x0018 RBINTE Port B interrupt enable bits 00000000

0x0019 RBINTED Port B interrupt edge select bits 00000000

0x001A FCFG Flash configuration register 00000000

0x001B TCTRL Timer 1/2 common control register 00000000

0x001C XCFG Extended configuration 00000001

0x001D Reserved Reserved Reserved
0x001E IPCH Interrupt return address (high byte) 00000000

0x001F IPCL Interrupt return address (low byte) 00000000

0x0020 RAIN Data on Port A pins N/A
0x0021 RAOUT Port A output latch 00000000

0x0022 RADIR Port A direction register 11111111

0x0023 Reserved Reserved Reserved
0x0024 RBIN Data on Port B pins N/A

Table A-10 Register Addresses and Reset State (continued)

Address Name Description Reset
Value
84 www.ubicom.com

IP2022 Getting Started—Assembly Language Syntax
0x0025 RBOUT Port B output latch 00000000

0x0026 RBDIR Port B direction register 11111111

0x0027 Reserved Reserved Reserved
0x0028 RCIN Data on Port C pins N/A
0x0029 RCOUT Port C output latch 00000000

0x002A RCDIR Port C direction register 11111111

0x002B Reserved Reserved Reserved
0x002C RDIN Data on Port D pins N/A
0x002D RDOUT Port D output latch 00000000

0x002E RDDIR Port D direction register 11111111

0x002F Reserved Reserved Reserved
0x0030 REIN Data on Port E pins N/A
0x0031 REOUT Port E output latch 00000000

0x0032 REDIR Port E direction register 11111111

0x0033 Reserved Reserved Reserved
0x0034 RFIN Data on Port F pins N/A
0x0035 RFOUT Port F output latch 00000000

0x0036 RFDIR Port F direction register 11111111

0x0037 Reserved Reserved Reserved
0x0038 Reserved Reserved Reserved
0x0039 RGOUT Port G output latch 00000000

0x003A RGDIR Port G direction register 11111111

0x003B Reserved Reserved Reserved
0x003C Reserved Reserved Reserved

Table A-10 Register Addresses and Reset State (continued)

Address Name Description Reset
Value
www.ubicom.com 85

Assembly Language Syntax—IP2022 Getting Started
0x003D Reserved Reserved Reserved
0x003E Reserved Reserved Reserved
0x003F Reserved Reserved Reserved
0x0040 RTTMR Real-time timer value 00000000

0x0041 RTCFG Real-time timer configuration register 00000000

0x0042 T0TMR Timer 0 value 00000000

0x0043 T0CFG Timer 0 configuration register 00000000

0x0044 T1CNTH Timer 1 counter register (high byte,
read-only)

00000000

0x0045 T1CNTL Timer 1 counter register (low byte,
read-only)

00000000

0x0046 T1CAP1H Timer 1 Capture 1 register (high byte,
read-only)

00000000

0x0047 T1CAP1L Timer 1 Capture 1 register (low byte,
read-only)

00000000

0x0048 T1CAP2H
T1CMP2H

Timer 1 Capture 2 (high byte)
Timer 1 Compare 2 (high byte)

00000000

0x0049 T1CAP2L
T1CMP2L

Timer 1 Capture 2 (low byte)
Timer 1 Compare 2 (low byte)

00000000

0x004A T1CMP1H Timer 1 Compare 1 register (high
byte)

00000000

0x004B T1CMP1L Timer 1 Compare 1 register (low
byte)

00000000

Table A-10 Register Addresses and Reset State (continued)

Address Name Description Reset
Value
86 www.ubicom.com

IP2022 Getting Started—Assembly Language Syntax
0x004C T1CFG1H Timer 1 configuration register 1 (high
byte)

00000000

0x004D T1CFG1L Timer 1 configuration register 1 (low
byte)

00000000

0x004E T1CFG2H Timer 1 configuration register 2 (high
byte)

00000000

0x004F T1CFG2L Timer 1 configuration register 2 (low
byte)

00000000

0x0050 ADCH ADC value (high byte) 00000000

0x0051 ADCL ADC value (low byte) 00000000

0x0052 ADCCFG ADC configuration register 00000000

0x0053 ADCTMR ADC timer register 00000000

0x0054 T2CNTH Timer 2 counter register (high byte,
read-only)

00000000

0x0055 T2CNTL Timer 2 counter register (low byte,
read-only)

00000000

0x0056 T2CAP1H Timer 2 Capture 1 register (high byte,
read-only)

00000000

0x0057 T2CAP1L Timer 2 Capture 1 register (low byte,
read-only)

00000000

0x0058 T2CAP2H
T2CMP2H

Timer 2 Capture 2 (high byte)
Timer 2 Compare 2 (high byte)

00000000

0x0059 T2CAP2L
T2CMP2L

Timer 2 Capture 2 (low byte)
Timer 2 Compare 2 (low byte)

00000000

Table A-10 Register Addresses and Reset State (continued)

Address Name Description Reset
Value
www.ubicom.com 87

Assembly Language Syntax—IP2022 Getting Started
0x005A T2CMP1H Timer 2 Compare 1 register (high
byte)

00000000

0x005B T2CMP1L Timer 2 Compare 1 register (low
byte)

00000000

0x005C T2CFG1H Timer 2 configuration register 1 (high
byte)

00000000

0x005D T2CFG1L Timer 2 configuration register 1 (low
byte)

00000000

0x005E T2CFG2H Timer 2 configuration register 2 (high
byte)

00000000

0x005F T2CFG2L Timer 2 configuration register 2 (low
byte)

00000000

0x0060 S1TMRH Serializer 1 clock timer register (high
byte)

00000000

0x0061 S1TMRL Serializer 1 clock timer register (low
byte)

00000000

0x0062 S1TBUFH Serializer 1 transmit buffer (high
byte)

00000000

0x0063 S1TBUFL Serializer 1 transmit buffer (low byte) 00000000

0x0064 S1TCFG Serializer 1 transmit configuration 00000000

0x0065 S1RCNT Serializer 1 received bit count
(actual) (read-only)

00000000

0x0066 S1RBUFH Serializer 1 receive buffer (high byte) 00000000

0x0067 S1RBUFL Serializer 1 receive buffer (low byte) 00000000

Table A-10 Register Addresses and Reset State (continued)

Address Name Description Reset
Value
88 www.ubicom.com

IP2022 Getting Started—Assembly Language Syntax
0x0068 S1RCFG Serializer 1 receive configuration 00000000

0x0069 S1RSYNC Serializer 1 receive bit sync pattern 00000000

0x006A S1INTF Serializer 1 status/interrupt flags 00000000

0x006B S1INTE Serializer 1 interrupt enable bits 00000000

0x006C S1MODE Serializer 1 serial mode/clock select
register

00000000

0x006D S1SMASK Serializer 1 receive sync mask 00000000

0x006E PSPCFG Parallel slave peripheral configura-
tion register

00000000

0x006F CMPCFG Comparator configuration register 00000000

0x0070 S2TMRH Serializer 2 clock timer register (high
byte)

00000000

0x0071 S2TMRL Serializer 2 clock timer register (low
byte)

00000000

0x0072 S2TBUFH Serializer 2 transmit buffer (high
byte)

00000000

0x0073 S2TBUFL Serializer 2 transmit buffer (low byte) 00000000

0x0074 S2TCFG Serializer 2 transmit configuration 00000000

0x0075 S2RCNT Serializer 2 received bit count
(actual) (read-only)

00000000

0x0076 S2RBUFH Serializer 2 receive buffer (high byte) 00000000

0x0077 S2RBUFL Serializer 2 receive buffer (low byte) 00000000

Table A-10 Register Addresses and Reset State (continued)

Address Name Description Reset
Value
www.ubicom.com 89

Assembly Language Syntax—IP2022 Getting Started
A.6 List of IP2022-Specific Reserved Words
The following list shows all of the instruction mnemonic names
and special-purpose register names. Both the uppercase and
lowercase versions of these names are reserved words. Reserved
words may not be used as symbolic names.

adccfg adch adcl adctmr add addc addrh addrl

and break call callh calll clr clrb cmp

cmpcfg cse csne cwdt datah datal dec decsnz

decsz dph dpl fcfg ferase fread fwrite inc

incsnz incsz int intspd intvech intvecl ipch

ipcl iph ipl iread iwrite jmp loadh loadl mov

mulh muls mulu nop not or page pch pcl pop

pspcfg push radir rain raout rbdir rbin

0x0078 S2RCFG Serializer 2 receive configuration 00000000

0x0079 S2RSYNC Serializer 2 receive bit sync pattern 00000000

0x007A S2INTF Serializer 2 status/interrupt flags 00000000

0x007B S2INTE Serializer 2 interrupt enable bits 00000000

0x007C S2MODE Serializer 2 serial mode/clock select
register

00000000

0x007D S2SMASK Serializer 2 receive sync mask 00000000

0x007E CALLH Top of call stack (high byte) 11111111

0x007F CALLL Top of call stack (low byte) 11111111

Table A-10 Register Addresses and Reset State (continued)

Address Name Description Reset
Value
90 www.ubicom.com

IP2022 Getting Started—Assembly Language Syntax
rbinte rbinted rbintf rbout rcdir rcin rcout

rddir rdin rdout redir rein reout ret rfdir

rfin rfout rgdir rgout rl rr rtcfg rttmr

s1inte s1intf s1mode s1rbufh s1rbufl s1rcfg

s1rcnt s1rsync s1smask s1tbufh s1tbufl

s1tcfg s1tmrh s1tmrl s2inte s2intf s2mode

s2rbufh s2rbufl s2rcfg s2rcnt s2rsync

s2smask s2tbufh s2tbufl s2tcfg s2tmrh s2tmrl

sb setb snb spdreg speed sph spl status sub

subc swap t0cfg t0tmr t1cap1h t1cap1l t1cap2h

t1cap2l t1cfg1h t1cfg1l t1cfg2h t1cfg2l

t1cmp1h t1cmp1l t1cmp2h t1cmp2l t1cnth

t1cntl t2cap1h t2cap1l t2cap2h t2cap2l

t2cfg1h t2cfg1l t2cfg2h t2cfg2l t2cmp1h

t2cmp1l t2cmp2h t2cmp2l t2cnth t2cntl tctrl

test wreg xcfg xor

A.7 Directives
The IP2022 assembler has four directives in addition to the
standard list:

.word—four bytes

.long—four bytes

.half—two bytes

.short—two bytes
www.ubicom.com 91

Assembly Language Syntax—IP2022 Getting Started
A.8 In-Line Assembly in C Source Files
In-line assembly code is embedded in a C source file using the
asm statement. To prevent the compiler from re-ordering
instructions during its optimization phase, keep blocks of
assembly language instructions together in a single asm
statement with the volatile qualifier, as shown in the following
example:

asm volatile ("

1: sb S2INTF,4

page 1b

jmp 1b

clrb S2INTF,4

clrb STATUS,0

rl w,%0

mov S2TBUFL,w

mov w,#1

rl wreg

mov S2TBUFH,w"

:/* No output */

:"rS" (data)

);

For more information about the interface between C and in-line
assembly language, see the GNUPro Toolkit—GNUPro Compiler
Tools manual, pages 253 to 261.
92 www.ubicom.com

B.0 Demo Board Schematics

This appendix shows the schematic diagrams for the Demo
Board. Resistors R3 and R4 and capacitors C16 through C19
appear in the crystal oscillator circuits, however these components
are not required, and their locations on the Demo Board are not
populated.
www.ubicom.com 93

Demo Board Schematics—IP2022 Getting Started
B.1 IP2022

TSI
TSO

RG1

F2
0805

RE3

RA1

R
ST

/

+
C2
10u
6032

1
2

R
C

7

R
G

4

R
D

4

IOVDD3

RA3

O
SC

1

RG2

R1

10
0603

IOVDD

F5
0805

+2.5VD

R
D

6

F11
0805

JP13

1
2
3

R
D

1

RE6

RG3

G
VD

D

RC3

RE4

R
G

7

+2.5VD

RF0

IP2022

U1

IP2022

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24

25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40

64
63
62
61
60
59
58
57
56
55
54
53
52
51
50
49
48
47
46
45
44
43
42
41

80 79 78 77 76 75 74 73 72 71 70 69 68 67 66 65

TSS*
TSCK
TSI
TSO
RA0
RA1
RA2
RA3
DVDD
DVSS
IOVSS
IOVDD
RB0
RB1
RB2
RB3
RB4
RB5
RB6
RB7
RC0
RC1
RC2
RC3

R
C

4
R

C
5

R
C

6
R

C
7

R
D

0
R

D
1

D
VD

D
D

VS
S

IO
VS

S
IO

VD
D

R
D

2
R

D
3

R
D

4
R

D
5

R
D

6
R

D
7

RG3
RG2
RG1
RG0
RF7
RF6
RF5
RF4

DVDD
DVSS

IOVSS
IOVDD

RF3
RF2
RF1
RF0
RE7
RE6
RE5
RE4
RE3
RE2
RE1
RE0

R
ST

*
O

SC
2

O
SC

1
XV

SS
XV

D
D

R
TC

LK
2

R
TC

LK
1

D
VS

S
D

VD
D

AV
SS

AV
D

D
R

G
7

R
G

6
R

G
5

R
G

4
G

VD
D

R
C

4

TSS/
TSCK

IOVDD
voltage
selection

R
C

5

F1
0805

RC1

R2

0603
10

+3.3V

R
TC

LK
2

RC0

RB6

R
G

6

RF1

RE5

RE7

RF3

RF6

+2.5VD

IOVDD1

DVDD1

R
G

5

+C41
10u
6032

1
2

RC2

C4
0.1u
0603

AV
D

D

+2.5VD

F4 0805 RB2

RB5

RB3

XV
D

D

R
TC

LK
1

D
VD

D
4

RF4

R
D

2

R
D

7

RB4

R
D

5

C3
0.1u
0603

RA2

RE2

D
VD

D
2

+C5
10u
6032

1
2

F3
0805

+2.5VD

RF7

RB7

RF2

+2.5VD

RB1

F15

0805

RA0

RB0

IO
VD

D
2

R
C

6

+2.5VA

O
SC

2

RE1

R
D

0

RF5

R
D

3

RE0

+2.5VDRG0

C1
0.1u
0603

DVDD3
94 www.ubicom.com

IP2022 Getting Started—Demo Board Schematics
B.2 Reset

B.3 Clock

R10

0603
360

SW7

OMRON_B3S-1000

RST/

IOVDD

C30
1u
0805

TRST/

Reset Circuitry

D9
LL4148

1
2 R8

0603
33k

OSC Clock

C19

0603

NL

JP14

OSC
12

Y2
4.000 MHz

C18

0603

NL

OSC1

R4
0603

NL

OSC2

TP2
www.ubicom.com 95

Demo Board Schematics—IP2022 Getting Started
B.4 RTCLK

B.5 Power

C17

0603

NL

32.768kHz

JP12

RTCLK
12

Y1

CM100S32.768KDZFT

C16

0603

NL

RTCLK2 RTCLK1

TP1

R3
0603

NL

Real Time Clock

R22

0603
0 ohms

+3.3V+2.5VD

RST/

F13
0805

unregulated
power >7.5V

Power Supply Block

UNREG_PWR

+5V+2.5VA
J10

CUISTACK_PJ-002A

1

2
3

PS1

PowerSupplies

DCIN_POS 2V5D_OUT

3V3_OUT

2V5A_OUT

UNREG_OUT

D
G

N
D

AG
N

D

5V_OUT

RESET/

C26
0.1u
0603

F12
0805
96 www.ubicom.com

IP2022 Getting Started—Demo Board Schematics
B.6 ISD/ISP

3

+ C23
10u
6032

1
2

4

TSO

5
TRST/

6

+2.5VD

R7

0603
10k

7
JP24

1
2
3

TSCK
OSC1

8
9

J9

5x
1

H
ea

de
r

10

2+3.3V TSS/

+3.3V

J8

4x
1

H
ea

de
r

TSI

R5

0603
10k

ISP Connector R6

0603
10k
www.ubicom.com 97

Demo Board Schematics—IP2022 Getting Started
B.7 RS-232 Communications

RC3

U2

SP211/SO

11
10

12
14
15
16
13
17

24
25

9
4

27
23
18

8
5
26
22
19

7
6

20
21

2
3
1
28

VC
C

G
N

D

C1+
C1-
C2+
C2-
V+
V-

EN
SHDN

R1IN
R2IN
R3IN
R4IN
R5IN

R1OUT
R2OUT
R3OUT
R4OUT
R5OUT

T1IN
T2IN
T3IN
T4IN

T1OUT
T2OUT
T3OUT
T4OUT

RC2

P2
KF22-E9S-NJ

5 9 4 8 3 7 2 6 110 11

R
x
D

JP
21

D
C

E_
Tx

D

1
2

F7
0805

C21
0.1u
0603

C24
0.1u
0603

T
x
D

D
C
D

+5V

R
T
S

D
T
R

JP
19

D
TE

_D
C

D

1
2

C20
0.1u
0603

RC0

Male
D
S
R

JP
20

D
C

E_
R

TS

1
2

JP
16

D
C

E_
C

TS

1
2

Female

DCE
Signals

RC4

C
T
S

C22
0.1u
0603

JP
23

D
TE

_R
TS

1
2

P1
KF22-E9P-NJ

5 9 4 8 3 7 2 6 110 11

RS232 Communications

F6
0805

F9
0805

DTE
Signals

To Modem

JP
15

D
C

E_
R

xD

1
2

RC1

To PC

JP
17

D
TE

_R
xD

1
2

F8
0805

NL

JP
22

D
TE

_T
xD

1
2

RE5

D
C
D

F100805

+5V

D
T
R

JP
18

D
TE

_C
TS

1
2

D
S
R

RF1

RF7

C25
0.1u
0603

T
x
D

C
T
S

R
x
D

RE3

R
T
S

98 www.ubicom.com

IP2022 Getting Started—Demo Board Schematics
B.8 ADC and ADC Reference

RG7

U3

LT1460-2.5

2

4

6VIN

G
N

D VOUT

J12

AGND

1

C28
0.1u
0603

ADC Reference Voltage

ADC IN
J11

ADC IN

1

+5V

+ C27
10u
6032

1
2

JP25
Vref ADC

1 2 RG3

2.5V

R9

0603
4.7k

TP3

C29
0.1u
0603
www.ubicom.com 99

Demo Board Schematics—IP2022 Getting Started
B.9 Run LED

B.10 I2C EEPROM

RG6

Run LED Circuitry

D16

1
2

R21

0603
100

JP26
RUN LED

1 2

+3.3V

SCL

I2C

DGND
R12

0603
4.7k

SDA

R11

0603
4.7k

U5

AT24C256

4

8

2
1

6

5

7GND

VCC

A1
A0

SCL

SDA

WP
100 www.ubicom.com

IP2022 Getting Started—Demo Board Schematics
B.11 SPI Temperature Sensor

B.12 On-Board Power Supply

U4

DS1722S

1

2

3

4 5

6

7

8Vddd

CE

SCLK

GND SDO

SDI

SERMODE

Vdda

SCLK

CS/

SPI

SI

SO

+3.3V

DCIN_POS

+

C36
100uF 10V1

2

+

C39
100uF 20V1

2

U7

MAX1793EUE-25

2
3
4
5

7

12
13
14
15

6

11
10 17

IN
IN
IN
IN

SHDN

OUT
OUT
OUT
OUT

RESET

SET
GND EP

C40
3.3nF
0603

2V5A_OUT

3V3_OUT

+

C37
6.8uF 16V1

2

C35
0.1uF
0603

D12
Red
3216

1
2

Fuse Block

R18

0603
4.99k 1%

T1
20uH

4
1

3
2

R17

0603
1.82k 1%

F14
0.75A Fast

R15

0603
4.99k 1%

7343
D13
1N5818

1
2

D11
LL4148

12

U8

LT1376 /S8

2

1 3

7

6 8
5

4Vin

Boost Vsw

FB

GND Vc
SHDN*

BIAS

RESET/

D14
LL4148

12

R19

0603
0 ohms

R14

0603
5.36k 1%

7343

6032

5V_OUT

TP11

+

C33
100uF 20V1

2

C34
3.3nF
0603

TP14

TP12

D10

DL4001

1 2

7343

AGND

UNREG_OUT

7343

DGND

TP10

T2
20uH

4
1

3
2

SM1

2V5D_OUT

SM1

C31
0.1uF
0603

D15
1N5818

1
2

+

C32
100uF 10V1

2

R13

0603
360

TP13

TP16

U6

LT1376 /S8

2

1 3

7

6 8
5

4Vin

Boost Vsw

FB

GND Vc
SHDN*

BIAS

TP15
R16

0603
100

7343 +C38
10uF 10V

1
2

www.ubicom.com 101

Demo Board Schematics—IP2022 Getting Started
B.13 User LEDs

R
P1

-6
10

0

8
6

D8

1
2

RB6

D1-D8
3216
Green

D1

1
2

RB0

D6

1
2

D2

1
2

RB2

R
P1

-2
10

0

3
1

MSB

J1
8 Pin Header

12345678

RB5

SW1

GRAYHILL_76SB08S

1
2
3
4
5
6
7
8

16
15
14
13
12
11
10
9

R
P1

-3
10

0

4
1

D3
1

2
D7

1
2

R
P1

-8
10

0

10
6

RB7

R
P1

-4
10

0

5
1

RB4

RB1

D5

1
2

R
P1

-1
10

0

2
1

R
P1

-5
10

0

7
6

RB3

Port B/Prototype LED's

D4

1
2

R
P1

-7
10

0

9
6

102 www.ubicom.com

IP2022 Getting Started—Demo Board Schematics
B.14 Switches

RA1

RP3-7
470

9
6

RP2-4
10k

5
1

RP3-5
470

7
6

CFG3

JP81 2
CFG1

MSB

RP2-3
10k

4
1

SW4
GRAYHILL_76SB04S

1234

8765

RA2

Configuration Bits

RA3

1 2

RP3-6
470

8
6

+3.3V

RA0CFG0

CFG0-CFG3

RP3-8
470

10
6

CFG2

JP11
1 2

RP2-2
10k

3
1

JP8-JP11

1 2

RP2-1
10k

2
1

www.ubicom.com 103

Demo Board Schematics—IP2022 Getting Started
+3.3V

RP3-3470
41

SW2 OMRON_B3S-1000

J7
HEADER 4

1234

RP3-1470
21

RP2-510k
7 6

SW6 OMRON_B3S-1000

SW5 OMRON_B3S-1000 RP2-710k
9 6

SW3 OMRON_B3S-1000 RP2-610k
8 6

Active Low CMOS Level
SPST Switches

RP2-810k
10 6

RP3-4470
51

RP3-2470
31
104 www.ubicom.com

IP2022 Getting Started—Demo Board Schematics
B.15 Jumpers

+3.3V

RC5

RE3

RE3

RE5

JP1 SDA
12

JP2 SO
12

JP7 SI
12 RE5

SPI/I2C Communications Block

JP3 SDA
12

JP4 SCLK
12

JP6 SCL
12

RE0

JP5 CS/
12

RE0

COM1

I2C/SPI_Module

SCL

D
G

N
D

SDA

SO

SI

SCLK

CS/

+3
.3

V

www.ubicom.com 105

Demo Board Schematics—IP2022 Getting Started
B.16 Connectors

+2.5VD

RB0

R20

0603

0 ohms

RG3

RF6

RF1

RE4

RD7

RD2

RC5

RC0

J14

18-pin Header

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18

RB3

RG4

RA1

RF7

RF2

RE5

RE0

RD3

RC6

RC1

RB4

OSC2

J15

18-pin Header

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18

RG5

RF3

RE1

RC7

RB5

RD0

RG0

RE6

RD4

RC2

J13

18-pin Header

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18 RA3

RB1

RG6

RG1

RF4

RE7

RE2

RD5

RA0

RC3

RB6

RF0

RG2

RG7

I/O Expansion

RF5

RA2

RE3

RD6

RD1

RC4

RB7

RB2

NL
106 www.ubicom.com

IP2022 Getting Started—Demo Board Schematics
B.17 Prototype Area

+3.3V

NL

J5

18-pin Header

123456789101112131415161718

J2

18-pin Header

123456789101112131415161718

NL

+5V

NL

Prototyping Area

J6

18-pin Header

123456789101112131415161718
www.ubicom.com 107

Demo Board Schematics—IP2022 Getting Started
PROTOTYPEAREA-18X26
108 www.ubicom.com

IP2022 Getting Started—Demo Board Schematics
B.18 Daughter Board Connectors (J3, J4)

B.19 Test Points

RC6

+3.3V

RG7

RC6

RD5

RB1
RB0

RC7

+2.5VD

RC3

J3

SMS-130-01-T-D

2
4
6
8
10
12
14
16
18
20
22
24
26
28
30
32
34
36
38
40
42
44
46
48
50

1
3
5
7
9

11
13
15
17
19
21
23
25
27
29
31
33
35
37
39
41
43
45
47
49
51 52
53 54
55 56
57 58
59 60

RE4

+3.3V

Mother/Daughterboard Interface Connectors

RA0
RA2

RB6

Mother/Daughterboard Interface Connectors

RE5

+3.3V

RC4

RG3

RD0

RC1

RB4

RG4

RF7

RC4

RF5

+2.5VD

RD2

RD7

RA3

+5V

J4

SMS-130-01-T-D

2
4
6
8
10
12
14
16
18
20
22
24
26
28
30
32
34
36
38
40
42
44
46
48
50

1
3
5
7
9

11
13
15
17
19
21
23
25
27
29
31
33
35
37
39
41
43
45
47
49
51 52
53 54
55 56
57 58
59 60

RA1

RG2

+5V

RG7

RF2

RB5
RB3

RB2

RC2
RC5

RD2

RC0

RG3

RB1

RG4

RE2

RC7

RG5

RF4
RE7

RG1

RD3

RC2

RB5 RB6

RG0

+2.5VD

RF6

RD1

RG1

+2.5VD

RD5

RB4

RF0

RC3

RD6

RG6

RE0

+5V

UNREG_PWR

RD0
RD1

RC1

RD4

RB0

RC5

RB3

RE6

+3.3V

RG0

RD7

+5V

RB7

RG2

RB2

RA0

+5V

RG5

+5V

RD4
RD6

RA2

RC0

RF3

J3 provides access to Serdes 1
J4 provides access to Serdes 2

RD3

RE1

+3.3V

RE3

RA3

RB7

RA1

UNREG_PWR

RF1

+3.3V

RG6

TP4 TP6TP5
www.ubicom.com 109

Demo Board Schematics—IP2022 Getting Started
B.20 Bypass Capacitors

B.21 Mounting Holes

C8

0.022u
06030603

C9

0.022u

XVDDDVDD3

C10

0.022u

IOVDD2DVDD2

C14

0.022u

C6

0.022u
0603

DVDD1 IOVDD1

C15

0.022u
0603

AVDD

0603

GVDD

0603

DVDD4

C13

0.022u

C7

0.022u
0603 0603

U1 Bypassing
(One for each: DVDD[1-4], IOVDD[1-3], XVDD,
AVDD, GVDD)

C12

0.022u

C11

0.022u
0603

IOVDD3

0603

MH4
Mounting Hole

1
gn

d

MH2
Mounting Hole

1
gn

d

MH1
Mounting Hole

1
gn

d

Mounting Holes (4 corners)

MH3
Mounting Hole

1
gn

d

110 www.ubicom.com

	Quick Set Up
	Overview
	2.1 Minimum System Requirements
	2.2 Installation CD-ROM
	2.3 Installing the Software
	2.4 Contents of the ubicom Directory

	Evaluation Kit and Demo Board
	3.1 Terminology
	3.2 Demo Board Set-Up
	3.2.1 Demo Board Connections
	3.2.2 Power Supply
	3.2.3 PC/Terminal Connection
	3.2.4 ISD/ISP Connection
	3.2.5 Verifying Installation

	3.3 Description of Hardware Blocks
	3.3.1 IP2022
	3.3.2 Reset
	3.3.3 Clock
	3.3.4 RTCLK
	3.3.5 Power
	3.3.6 ISD/ISP
	3.3.7 ADC and ADC Reference
	3.3.8 Run LED
	3.3.9 I2C EEPROM
	3.3.10 SPI Temperature Sensor
	3.3.11 On-Board Power Supply
	3.3.12 User LEDs

	3.4 Switches
	3.4.1 Jumpers
	3.4.2 Connectors
	3.4.3 Prototype Area
	3.4.4 Daughter Board Connectors (J3, J4)
	3.4.5 Test Points

	3.5 Board Configuration Options
	3.5.1 RS232 (JP15-JP23)
	3.5.2 I2C (JP1, JP3, JP6)
	3.5.3 SPI (JP2, JP4, JP5, JP7)
	3.5.4 IOVDD (JP13)
	3.5.5 Tool VDD (JP24)
	3.5.6 Clock (JP14)
	3.5.7 RTCLK (JP12)
	3.5.8 4-Bit DIP Switch (JP8-JP11)
	3.5.9 Run LED (JP26)

	Unity User Interface
	4.1 Unity Windows
	4.2 Unity Menu Bar
	4.3 Unity Tool Bar
	4.4 Creating a New Project
	4.5 Adding and Removing Files
	4.6 Project File Tree

	Configuring ipModules
	5.1 Project Configuration GUI
	5.2 Generating Makefiles and Header Files

	Compiling
	Debugging
	7.1 Debugging Tool Bar
	7.2 Viewing Program Execution
	7.3 Breakpointing Program Execution
	7.4 Viewing Registers
	7.5 Viewing Memory
	7.6 Memory Map

	Utilities
	8.1 IP2KProg User Interface
	8.1.1 Downloading a Project

	8.2 GNU Binary Utilities

	Assembly Language Syntax
	A.1 Comments, Constants, and Symbols
	A.2 Addressing Modes
	A.3 Sections Used in Default Linker Script
	A.4 Summary of CPU Instructions
	A.5 Summary of CPU and Peripheral Registers
	A.6 List of IP2022-Specific Reserved Words
	A.7 Directives
	A.8 In-Line Assembly in C Source Files

	Demo Board Schematics
	B.1 IP2022
	B.2 Reset
	B.3 Clock
	B.4 RTCLK
	B.5 Power
	B.6 ISD/ISP
	B.7 RS-232 Communications
	B.8 ADC and ADC Reference
	B.9 Run LED
	B.10 I2C EEPROM
	B.11 SPI Temperature Sensor
	B.12 On-Board Power Supply
	B.13 User LEDs
	B.14 Switches
	B.15 Jumpers
	B.16 Connectors
	B.17 Prototype Area
	B.18 Daughter Board Connectors (J3, J4)
	B.19 Test Points
	B.20 Bypass Capacitors
	B.21 Mounting Holes

