

February 1998

74VHC161284 IEEE 1284 Transceiver

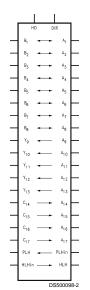
General Description

The VHC161284 contains eight bidirectional data buffers and eleven control/status buffers to implement a full IEEE 1284 compliant interface. The device supports the IEEE 1284 standard and is intended to be used in Extended Capabilities Port mode (ECP). The pinout allows for easy connection from the Peripheral (A-side) to the Host (cable side).

Outputs on the cable side can be configured to be either open drain or high drive (± 14 mA). The pull-up and pull-down series termination resistance of these outputs on the cable side is optimized to drive an external cable. In addition, all inputs (except HLH) and outputs on the cable side contain internal pull-up resistors connected to the $V_{\rm CC}$ supply to provide proper termination and pull-ups for open drain mode

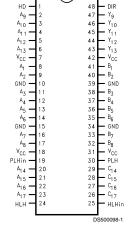
Outputs on the Peripheral side are standard low-drive CMOS outputs. The DIR input controls data flow on the A_1-A_8/B_1-B_8 transceiver pins.

Features


- Supports IEEE 1284 Level 1 and Level 2 signaling standards for bidirectional parallel communications between personal computers and printing peripherals
- Replaces the function of two (2) 74ACT1284 devices
- All inputs have hysteresis to provide noise margin
- B and Y output resistance optimized to drive external cable
- B and Y outputs in high impedance mode during power down
- Inputs and outputs on cable side have internal pull-up resistors
- Flow-through pin configuration allows easy interface between the Peripheral and Host

Ordering Code:

Ordering Number	Package Number Package Description		
74VHC161284MEA MS48A		48-Lead Molded JEDEC, SSOP	
74VHC161284MTD MTD48		48-Lead Molded JEDEC, TSSOP	

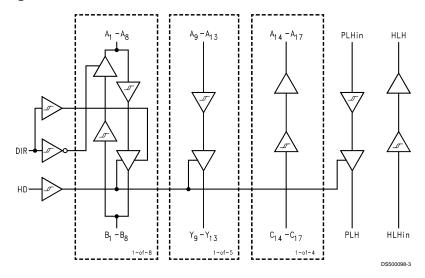

Surface mount packages are also available on Tape and Reel. Specify by appending the suffix letter "X" to the ordering code.

Logic Symbol

Connection Diagram

Pin Assignment for SSOP and TSSOP

Pin Descriptions


Pin Names	Description		
HD	High Drive Enable Input (Active High)		
DIR	Direction Control Input		
A ₁ -A ₈	Inputs or Outputs		
B ₁ -B ₈	Inputs or Outputs		
A ₉ -A ₁₃	Inputs		
Y ₉ -Y ₁₃	Outputs		
A ₁₄ -A ₁₇	Outputs		
C ₁₄ -C ₁₇	Inputs		
PLH _{IN}	Peripheral Logic High Input		
PLH	Peripheral Logic High Output		
HLH _{IN}	Host Logic High Input		
HLH	Host Logic High Output		

Truth Table

Inputs		Outnute		
DIR	HD	Outputs		
L	L	B ₁ -B ₈ Data to A ₁ -A ₈ , and		
		A ₉ -A ₁₃ Data to Y ₉ -Y ₁₃ *		
		C ₁₄ -C ₁₇ Data to A ₁₄ -A ₁₇		
		PLH Open Drain Mode		
L	Н	B ₁ -B ₈ Data to A ₁ -A ₈ , and		
		A ₉ -A ₁₃ Data to Y ₉ -Y ₁₃		
		C ₁₄ -C ₁₇ Data to A ₁₄ -A ₁₇		
Н	L	A ₁ -A ₈ Data to B ₁ -B ₈ **		
		A ₉ -A ₁₃ Data to Y ₉ -Y ₁₃ *		
		C ₁₄ -C ₁₇ Data to A ₁₄ -A ₁₇		
		PLH Open Drain Mode		
Н	Н	A ₁ -A ₈ Data to B ₁ -B ₈		
		A ₉ -A ₁₃ Data to Y ₉ -Y ₁₃		
		C ₁₄ -C ₁₇ Data to A ₁₄ -A ₁₇		

^{*}Y₉-Y₁₃ Open Drain Outputs **B₁-B₈ Open Drain Outputs

Logic Diagram

Absolute Maximum Ratings (Note 1)

If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/ Distributors for availability and specifications.

Supply Voltage

 V_CC -0.5V to + 7.0V

Input Voltage (V_I) — (Note 2)

 A_1 - A_{13} , PLH_{IN} , DIR, HD-0.5V to $V_{\rm CC}$ + 0.5V $B_1-B_8, C_{14}-C_{17}, HLH_{IN}$ -0.5V to + 5.5V (DC) B₁-B₈, C₁₄-C₁₇, HLH_{IN} -2.0V to + 7.0V *

*40 ns Transient

Output Voltage (V_O)

A₁-A₈, A₁₄-A₁₇, HLH -0.5V to V_{CC} + 0.5V B_1-B_8, Y_9-Y_{13}, PLH -0.5V to + 5.5V (DC) -2.0V to +7.0V* B_1-B_8, Y_9-Y_{13}, PLH

*40 ns Transient

DC Output Current (I_O)

A₁-A₈, HLH ±25 mA B_1-B_8, Y_9-Y_{13} ±50 mA PLH (Output LOW) 84 mA PLH (Output HIGH) -50 mA

Input Diode Current (IIK) —

(Note 2)

DIR, HD, $A_9 - A_{13}$, PLH, HLH, C₁₄-C₁₇

Output Diode Current (I_{OK})

 $A_1 - A_8$, $A_{14} - A_{17}$, HLH ±50 mA B_1-B_8, Y_9-Y_{13}, PLH -50 mA

-20 mA

DC Continuous V_{CC} or

±200 mA **Ground Current**

Storage Temperature -65°C to + 150°C

ESD (HBM) Last Passing

2000V Voltage

Recommended Operating Conditions

Supply Voltage

4.5V to 5.5V V_{CC} DC Input Voltage (V_I) 0V to V_{CC} Open Drain Voltage (V_O) 0V to 5.5V Operating Temperature (T_A) -40°C to + 85°C

Note 1: Absolute maximum ratings are values beyond which the device may be damaged or have its useful life impaired. Fairchild does not recommend operation outside the databook specifications.

Note 2: Either voltage limit or current limit is sufficient to protect inputs.

DC Electrical Characteristics

Symbol	Parameter		V _{cc}	$T_A = -40^{\circ}C \text{ to } +85^{\circ}C$	Units	Conditions
			(V)	Guaranteed Limits	1	
V _{IK}	Input Clamp Diode Voltage		3.0	-1.2	V	I _I = -18 mA
V _{IH}	Minimum High	A _n , PLH _{IN} , DIR, HD	4.5-5.5	0.7 V _{CC}	V	
	Level Input Voltage	B _n	4.5-5.5	2.0	1	
		C _n	4.5-5.5	2.3	1	
		HLH _{IN}	4.5-5.5	2.6	1	
V _{IL}	Maximum High	A _n , PLH _{IN} , DIR, HD	4.5-5.5	0.3 V _{CC}	V	
	Level Input Voltage	B _n	4.5-5.5	0.8	1	
		C _n	4.5-5.5	0.8	1	
		HLH _{IN}	4.5-5.5	1.6	1	
ΔVΤ	Minimum Input	A _n , PLH _{IN} , DIR, HD	4.5-5.5	0.4	V	V _T + -V _T -
	Hysteresis	B _n	4.5-5.5	0.4	1	$V_T^+ - V_T^-$
		C _n	5.0	0.8	1	V _T + -V _T -
		HLH _{IN}	5.0	0.3	1	V _T + -V _T -
V _{OH}	Minimum High	A _n , HLH	4.5	4.4	V	I _{OH} = -50 μA
'	Level Output Voltage		4.5	3.8	1	$I_{OH} = -8 \text{ mA}$
		B _n , Y _n	4.5	3.73		I _{OH} = -14 mA
		PLH	4.5	4.45	1	I _{OH} = -500 μA
V _{OL} Maximum Low Level Output Voltage		A _n , HLH	4.5	0.1	V	I _{OL} = 50 μA
	Voltage		4.5	0.44	1	I _{OL} = 8 mA
		B _n , Y _n	4.5	0.77	1	I _{OL} = 14 mA
		PLH	4.5	0.7		I _{OL} = 84 mA
RD	Maximum Output Impedance	B ₁ -B ₈ , Y ₉ -Y ₁₃	5.0	55	Ω	(Notes 3, 5)
	Minimum Output Impedance	B ₁ -B ₈ , Y ₉ -Y ₁₃	5.0	35	Ω	(Notes 3, 5)

DC Electrical Characteristics (Continued)

Symbol	Parameter		V _{CC}	$T_A = -40^{\circ}C$ to $+85^{\circ}C$	Units	Conditions	
				Guaranteed Limits	1		
RP	Maximum Pull-Up Resistance	B ₁ -B ₈ , Y ₉ -Y ₁₃ , C ₁₄ -C ₁₇	5.0	1650	Ω		
	Minimum Pull-Up Resistance	B ₁ -B ₈ , Y ₉ -Y ₁₃ , C ₁₄ -C ₁₇	5.0	1150	Ω		
I _{IH}	Maximum Input	A ₉ -A ₁₃ , PLH _{IN} , HD, DIR, HLH _{IN}	5.5	1.0	μA	V _I = 5.5V	
	Current in High State	C ₁₄ -C ₁₇	5.5	100	1	V _I = 5.5V	
I _{IL}	Maximum Input	A ₉ -A ₁₃ , PLH _{IN} , HD, DIR, HLH _{IN}	5.5	-1.0	μA	V _I = 0.0V	
Current in Low State	C ₁₄ -C ₁₇	5.5	-5.0	mA	V _I = 0.0V		
I _{OZH} Maximum Output Disable Current (High)	A ₁ — A ₈	5.5	20	μA	V _O = 5.5V		
		B ₁ -B ₈	5.5	100	1	V _O = 5.5V	
I _{OZL}	Maximum Output	A ₁ — A ₈	5.5	-20	μA	V _O = 0.0V	
Disable Current (Low)	B ₁ -B ₈	5.5	-5.0	mA	1		
I _{OFF}	Power Down Output Leakage	B ₁ -B ₈ , Y ₉ -Y ₁₃ , PLH	0.0	100	μA	V _O = 5.5V	
I _{OFF}	Power Down Input Leakage	C ₁₄ –C ₁₇ , HLH _{IN}	0.0	100	μA	V _I = 5.5V	
I _{OFF} — I _{CC}	Power Down Leakage to V _{CC}		0.0	250	μA	(Note 4)	
Icc	Maximum Supply Current		5.5	70	mA	V _I = V _{CC} or GND	

Note 3: Output impedance is measured with the output active low and active high (HD = high).

Note 4: Power-down leakage to V_{CC} is tested by simultaneously forcing all pins on the cable-side (B₁-B₈, Y₉-Y₁₃, PLH, C₁₄-C₁₇ and HLH_{IN} to 5.5V and measuring the resulting I_{CC}.

Note 5: This parameter is guaranteed but not tested, characterized only.

Symbol	Parameter	$T_{A} = -40^{\circ}$ $V_{CC} = 4$	Units	Fig. No.	
		Min	Max		
t _{PHL}	A ₁ -A ₈ to B ₁ -B ₈	2.0	30.0	ns	Figure 1
t _{PLH}	A ₁ -A ₈ to B ₁ -B ₈	2.0	30.0	ns	Figure 2
t _{PHL}	B ₁ -B ₈ to A ₁ -A ₈	2.0	30.0	ns	Figure .
t _{PLH}	B ₁ -B ₈ to A ₁ -A ₈	2.0	30.0	ns	Figure :
t _{PHL}	A ₉ -A ₁₃ to Y ₉ -Y ₁₃	2.0	30.0	ns	Figure
t _{PLH}	A ₉ -A ₁₃ to Y ₉ -Y ₁₃	2.0	30.0	ns	Figure 2
t _{PHL}	C ₁₄ -C ₁₇ to A ₁₄ -A ₁₇	2.0	30.0	ns	Figure
t _{PLH}	C ₁₄ -C ₁₇ to A ₁₄ -A ₁₇	2.0	30.0	ns	Figure
t _{SKEW}	LH-LH or HL-HL		6.0	ns	(Note 7
t _{PHL}	PLH _{IN} to PLH	2.0	30.0	ns	Figure
t _{PLH}	PLH _{IN} to PLH	2.0	30.0	ns	Figure
t _{PHL}	HLH _{IN} to HLH	2.0	30.0	ns	Figure
t _{PLH}	HLH _{IN} to HLH	2.0	30.0	ns	Figure
t _{PHZ}	Output Disable Time	2.0	18.0		Figure
t _{PLZ}	DIR to A ₁ -A ₈	2.0	18.0	ns	
t _{PZH}	Output Enable Time	2.0	25.0	20	Figure
t _{PZL}	DIR to A ₁ -A ₈	2.0	25.0	ns	
t _{PHZ}	Output Disable Time	2.0	25.0		Figure
t _{PLZ}	DIR to B ₁ -B ₈	2.0	25.0	ns	
t _{pEN}	Output Enable Time	2.0	28.0		<i></i>
	HD to B ₁ -B ₈ , Y ₉ -Y ₁₃			ns	Figure
t _{pDis}	Output Disable Time	2.0	28.0		Figure .
	HD to B ₁ -B ₈ , Y ₉ -Y ₁₃			ns	rigure
t _{pEn} -t _{pDis}	Output Enable-Output Disable		20.0	ns	
t _{SLEW}	Output Slew Rate				
t _{PLH}	B ₁ -B ₈ , Y ₉ -Y ₁₃	0.05	0.40	\//no	Figure
t _{PHL}		0.05	0.40	V/ns	Figure
t _r , t _f	t _{RISE} and t _{FALL}		120		Figure
	B ₁ -B ₈ , Y ₉ -Y ₁₃ (Note 6)		120	ns	(Note 8

Note 6: Open Drain

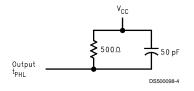
Note 7: t_{SKEW} is measured for common edge output transitions and compares the measured propagation delay for a given path type.

(i) $A_1 \! - \! A_8$ to $B_1 \! - \! B_8,\, A_9 \! - \! Y_{13}$ to $Y_9 \! - \! Y_{13}$

(ii) B_1 - B_8 to A_1 - A_8

(iii) C₁₄-C₁₇ to A₁₄-A₁₇

Note 8: This parameter is guaranteed but not tested, characterized only.


Note 9: Pulse Generator for all pulses: Rate \leq 1.0 MHz; $Z_O \leq 50\Omega;$ $t_f \leq$ 2.5 ns, $t_r \leq$ 2.5 ns.

Capacitance

Symbol	Parameter	Тур	Units	Conditions
C _{IN}	Input Capacitance	5	pF	V_{CC} = 0.0V (HD, DIR, A ₉ — A ₁₃ , C ₁₄ — C ₁₇ , PLH _{IN} and HLH _{IN})
C _{I/O} (Note 10)	I/O Pin Capacitance	12	pF	V _{CC} = 3.3V

Note 10: $C_{\text{I/O}}$ is measured at frequency = 1 MHz per MIL-STD-883B. Method 3012

AC Loading and Waveforms

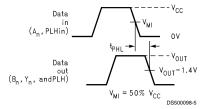
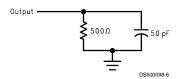
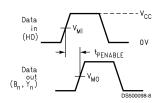




FIGURE 1. t_{PHL} Test Load and Waveforms A_1-A_8 to B_1-B_8 A_9-A_{13} to Y_9-Y_{13} PLH_{IN} to PLH

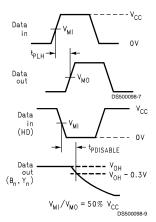
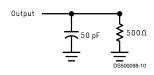
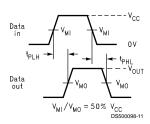
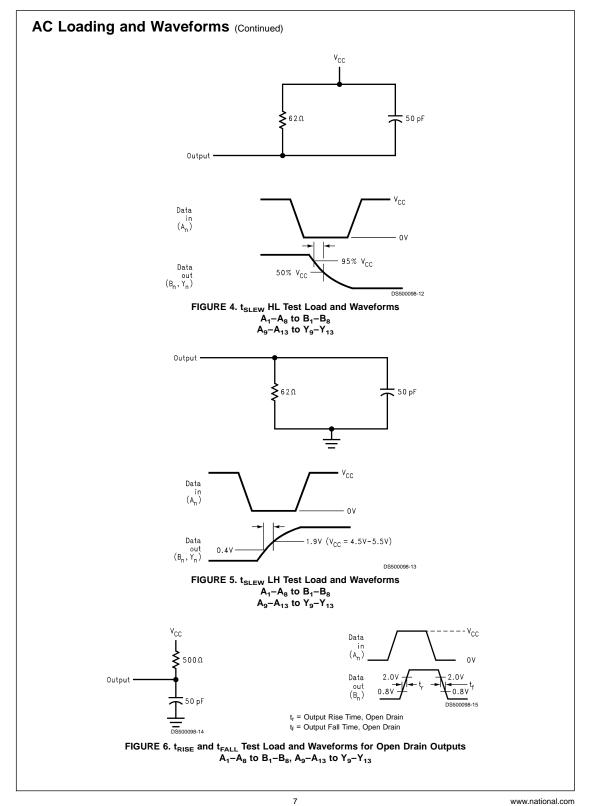
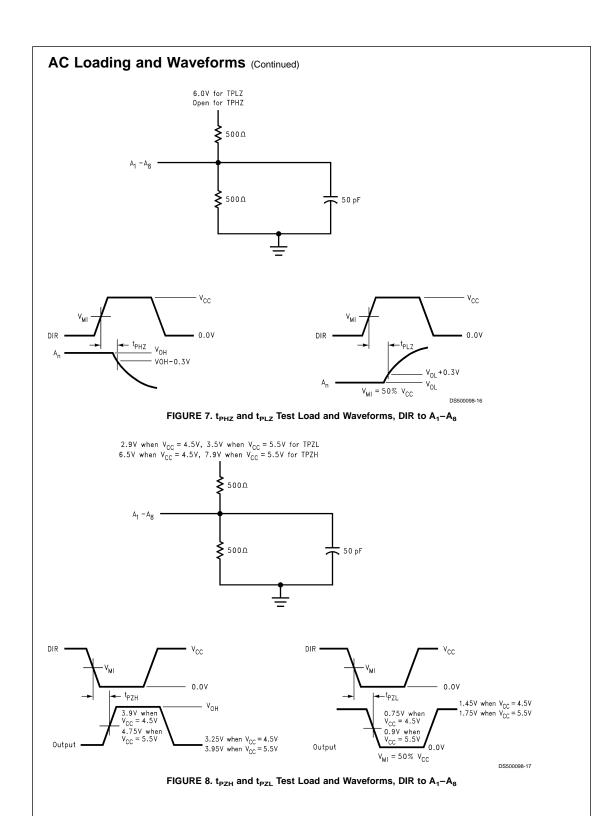
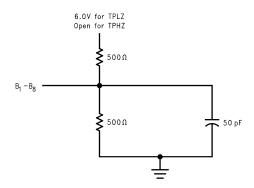



FIGURE 2. t_{PLH} , t_{pEn} , t_{pDis} Test Load and Waveforms A_1-A_8 to B_1-B_8 , A_9-A_{13} to Y_9-Y_{13} PLH_{IN} to PLH, HD to B_1-B_8 , Y_9-Y_{13} , PLH


FIGURE 3. t_{PHL} , t_{PLH} Test Load and Waveforms B_1-B_8 to A_1-A_8 , $C_{14}-C_{17}$ to $A_{14}-A_{17}$, HLH_{IN} to HLH

www.national.com

AC Loading and Waveforms (Continued)

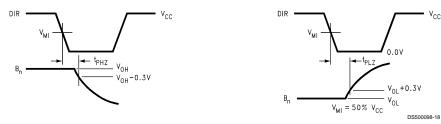
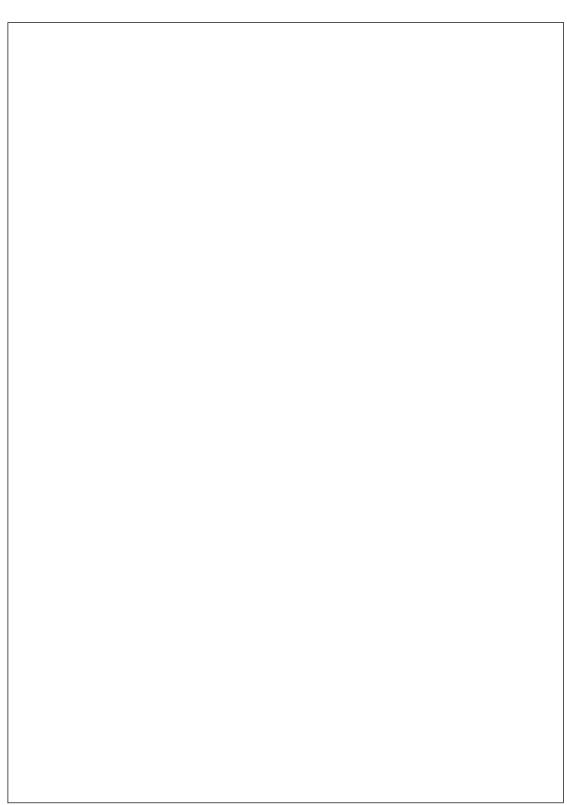
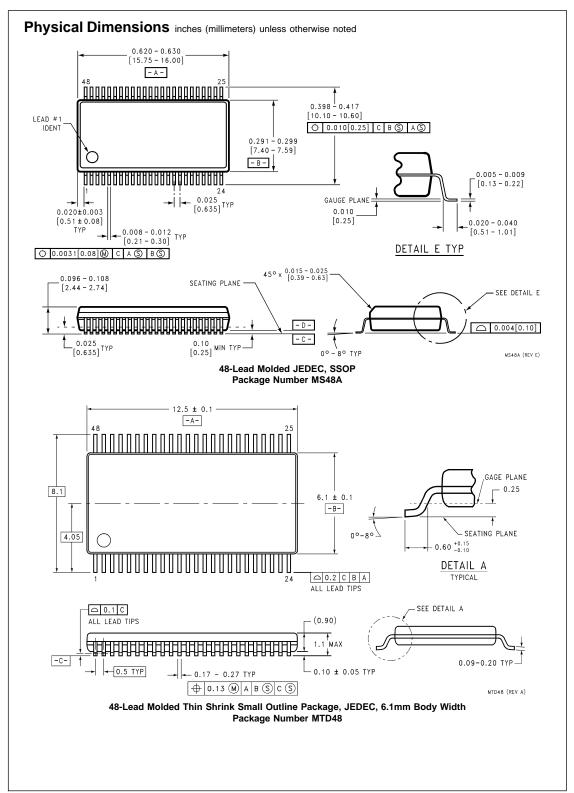




FIGURE 9. $t_{\rm PHZ}$ and $t_{\rm PLZ}$ Test Load and Waveforms, DIR to $\rm B_1\!-\!B_8$

LIFE SUPPORT POLICY

NATIONAL'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DE-VICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF NATIONAL SEMI-CONDUCTOR CORPORATION. As used herein:

- 1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
- 2. A critical component in any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

National Semiconductor Corporation Americas

Fax: 1-800-737-7018 Email: support@nsc.com

www.national.com

National Semiconductor Europe

Fax: +49 (0) 1 80-530 85 86 Fax: +49 (0) 1 80-530 85 86
Email: europe support@nsc.com
Deutsch Tel: +49 (0) 1 80-530 85 85
English Tel: +49 (0) 1 80-532 78 32
Français Tel: +49 (0) 1 80-532 93 58
Italiano Tel: +49 (0) 1 80-534 16 80

National Semiconductor Asia Pacific Customer Response Group Fax: 65-2504466 Email: sea.support@nsc.com

Japan Ltd. Tel: 81-3-5620-6175 Fax: 81-3-5620-6179

National Semiconductor