/* * Reed-Solomon coding and decoding * Phil Karn (karn at ka9q.ampr.org) September 1996 * * This file is derived from the program "new_rs_erasures.c" by Robert * Morelos-Zaragoza (robert at spectra.eng.hawaii.edu) and Hari Thirumoorthy * (harit at spectra.eng.hawaii.edu), Aug 1995 * * I've made changes to improve performance, clean up the code and make it * easier to follow. Data is now passed to the encoding and decoding functions * through arguments rather than in global arrays. The decode function returns * the number of corrected symbols, or -1 if the word is uncorrectable. * * This code supports a symbol size from 2 bits up to 16 bits, * implying a block size of 3 2-bit symbols (6 bits) up to 65535 * 16-bit symbols (1,048,560 bits). The code parameters are set in rs.h. * * Note that if symbols larger than 8 bits are used, the type of each * data array element switches from unsigned char to unsigned int. The * caller must ensure that elements larger than the symbol range are * not passed to the encoder or decoder. * */ #include <stdio.h> #include "rs.h" #if (KK >= NN) #error "KK must be less than 2**MM - 1" #endif /* This defines the type used to store an element of the Galois Field * used by the code. Make sure this is something larger than a char if * if anything larger than GF(256) is used. * * Note: unsigned char will work up to GF(256) but int seems to run * faster on the Pentium. */ typedef int gf; /* Primitive polynomials - see Lin & Costello, Error Control Coding Appendix A, * and Lee & Messerschmitt, Digital Communication p. 453. */ #if(MM == 2)/* Admittedly silly */ int Pp[MM+1] = { 1, 1, 1 }; #elif(MM == 3) /* 1 + x + x^3 */ int Pp[MM+1] = { 1, 1, 0, 1 }; #elif(MM == 4) /* 1 + x + x^4 */ int Pp[MM+1] = { 1, 1, 0, 0, 1 }; #elif(MM == 5) /* 1 + x^2 + x^5 */ int Pp[MM+1] = { 1, 0, 1, 0, 0, 1 }; #elif(MM == 6) /* 1 + x + x^6 */ int Pp[MM+1] = { 1, 1, 0, 0, 0, 0, 1 }; #elif(MM == 7) /* 1 + x^3 + x^7 */ int Pp[MM+1] = { 1, 0, 0, 1, 0, 0, 0, 1 }; #elif(MM == 8) /* 1+x^2+x^3+x^4+x^8 */ int Pp[MM+1] = { 1, 0, 1, 1, 1, 0, 0, 0, 1 }; #elif(MM == 9) /* 1+x^4+x^9 */ int Pp[MM+1] = { 1, 0, 0, 0, 1, 0, 0, 0, 0, 1 }; #elif(MM == 10) /* 1+x^3+x^10 */ int Pp[MM+1] = { 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1 }; #elif(MM == 11) /* 1+x^2+x^11 */ int Pp[MM+1] = { 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1 }; #elif(MM == 12) /* 1+x+x^4+x^6+x^12 */ int Pp[MM+1] = { 1, 1, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 1 }; #elif(MM == 13) /* 1+x+x^3+x^4+x^13 */ int Pp[MM+1] = { 1, 1, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1 }; #elif(MM == 14) /* 1+x+x^6+x^10+x^14 */ int Pp[MM+1] = { 1, 1, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1 }; #elif(MM == 15) /* 1+x+x^15 */ int Pp[MM+1] = { 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1 }; #elif(MM == 16) /* 1+x+x^3+x^12+x^16 */ int Pp[MM+1] = { 1, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1 }; #else #error "MM must be in range 2-16" #endif /* Alpha exponent for the first root of the generator polynomial */ #define B0 1 /* index->polynomial form conversion table */ gf Alpha_to[NN + 1]; /* Polynomial->index form conversion table */ gf Index_of[NN + 1]; /* No legal value in index form represents zero, so * we need a special value for this purpose */ #define A0 (NN) /* Generator polynomial g(x) * Degree of g(x) = 2*TT * has roots @**B0, @**(B0+1), ... ,@^(B0+2*TT-1) */ gf Gg[NN - KK + 1]; /* Compute x % NN, where NN is 2**MM - 1, * without a slow divide */ static inline gf modnn(int x) { while (x >= NN) { x -= NN; x = (x >> MM) + (x & NN); } return x; } #define min(a,b) ((a) < (b) ? (a) : (b)) #define CLEAR(a,n) {\ int ci;\ for(ci=(n)-1;ci >=0;ci--)\ (a)[ci] = 0;\ } #define COPY(a,b,n) {\ int ci;\ for(ci=(n)-1;ci >=0;ci--)\ (a)[ci] = (b)[ci];\ } #define COPYDOWN(a,b,n) {\ int ci;\ for(ci=(n)-1;ci >=0;ci--)\ (a)[ci] = (b)[ci];\ } void init_rs(void) { generate_gf(); gen_poly(); } /* generate GF(2**m) from the irreducible polynomial p(X) in p[0]..p[m] lookup tables: index->polynomial form alpha_to[] contains j=alpha**i; polynomial form -> index form index_of[j=alpha**i] = i alpha=2 is the primitive element of GF(2**m) HARI's COMMENT: (4/13/94) alpha_to[] can be used as follows: Let @ represent the primitive element commonly called "alpha" that is the root of the primitive polynomial p(x). Then in GF(2^m), for any 0 <= i <= 2^m-2, @^i = a(0) + a(1) @ + a(2) @^2 + ... + a(m-1) @^(m-1) where the binary vector (a(0),a(1),a(2),...,a(m-1)) is the representation of the integer "alpha_to[i]" with a(0) being the LSB and a(m-1) the MSB. Thus for example the polynomial representation of @^5 would be given by the binary representation of the integer "alpha_to[5]". Similarily, index_of[] can be used as follows: As above, let @ represent the primitive element of GF(2^m) that is the root of the primitive polynomial p(x). In order to find the power of @ (alpha) that has the polynomial representation a(0) + a(1) @ + a(2) @^2 + ... + a(m-1) @^(m-1) we consider the integer "i" whose binary representation with a(0) being LSB and a(m-1) MSB is (a(0),a(1),...,a(m-1)) and locate the entry "index_of[i]". Now, @^index_of[i] is that element whose polynomial representation is (a(0),a(1),a(2),...,a(m-1)). NOTE: The element alpha_to[2^m-1] = 0 always signifying that the representation of "@^infinity" = 0 is (0,0,0,...,0). Similarily, the element index_of[0] = A0 always signifying that the power of alpha which has the polynomial representation (0,0,...,0) is "infinity". */ void generate_gf(void) { register int i, mask; mask = 1; Alpha_to[MM] = 0; for (i = 0; i < MM; i++) { Alpha_to[i] = mask; Index_of[Alpha_to[i]] = i; /* If Pp[i] == 1 then, term @^i occurs in poly-repr of @^MM */ if (Pp[i] != 0) Alpha_to[MM] ^= mask; /* Bit-wise EXOR operation */ mask <<= 1; /* single left-shift */ } Index_of[Alpha_to[MM]] = MM; /* * Have obtained poly-repr of @^MM. Poly-repr of @^(i+1) is given by * poly-repr of @^i shifted left one-bit and accounting for any @^MM * term that may occur when poly-repr of @^i is shifted. */ mask >>= 1; for (i = MM + 1; i < NN; i++) { if (Alpha_to[i - 1] >= mask) Alpha_to[i] = Alpha_to[MM] ^ ((Alpha_to[i - 1] ^ mask) << 1); else Alpha_to[i] = Alpha_to[i - 1] << 1; Index_of[Alpha_to[i]] = i; } Index_of[0] = A0; Alpha_to[NN] = 0; } /* * Obtain the generator polynomial of the TT-error correcting, length * NN=(2**MM -1) Reed Solomon code from the product of (X+@**(B0+i)), i = 0, * ... ,(2*TT-1) * * Examples: * * If B0 = 1, TT = 1. deg(g(x)) = 2*TT = 2. * g(x) = (x+@) (x+@**2) * * If B0 = 0, TT = 2. deg(g(x)) = 2*TT = 4. * g(x) = (x+1) (x+@) (x+@**2) (x+@**3) */ void gen_poly(void) { register int i, j; Gg[0] = Alpha_to[B0]; Gg[1] = 1; /* g(x) = (X+@**B0) initially */ for (i = 2; i <= NN - KK; i++) { Gg[i] = 1; /* * Below multiply (Gg[0]+Gg[1]*x + ... +Gg[i]x^i) by * (@**(B0+i-1) + x) */ for (j = i - 1; j > 0; j--) if (Gg[j] != 0) Gg[j] = Gg[j - 1] ^ Alpha_to[modnn((Index_of[Gg[j]]) + B0 + i - 1)]; else Gg[j] = Gg[j - 1]; /* Gg[0] can never be zero */ Gg[0] = Alpha_to[modnn((Index_of[Gg[0]]) + B0 + i - 1)]; } /* convert Gg[] to index form for quicker encoding */ for (i = 0; i <= NN - KK; i++) Gg[i] = Index_of[Gg[i]]; } /* * take the string of symbols in data[i], i=0..(k-1) and encode * systematically to produce NN-KK parity symbols in bb[0]..bb[NN-KK-1] data[] * is input and bb[] is output in polynomial form. Encoding is done by using * a feedback shift register with appropriate connections specified by the * elements of Gg[], which was generated above. Codeword is c(X) = * data(X)*X**(NN-KK)+ b(X) */ int encode_rs(dtype data[KK], dtype bb[NN-KK]) { register int i, j; gf feedback; CLEAR(bb,NN-KK); for (i = KK - 1; i >= 0; i--) { #if (MM != 8) if(data[i] > NN) return -1; /* Illegal symbol */ #endif feedback = Index_of[data[i] ^ bb[NN - KK - 1]]; if (feedback != A0) { /* feedback term is non-zero */ for (j = NN - KK - 1; j > 0; j--) if (Gg[j] != A0) bb[j] = bb[j - 1] ^ Alpha_to[modnn(Gg[j] + feedback)]; else bb[j] = bb[j - 1]; bb[0] = Alpha_to[modnn(Gg[0] + feedback)]; } else { /* feedback term is zero. encoder becomes a * single-byte shifter */ for (j = NN - KK - 1; j > 0; j--) bb[j] = bb[j - 1]; bb[0] = 0; } } return 0; } /* * Performs ERRORS+ERASURES decoding of RS codes. If decoding is successful, * writes the codeword into data[] itself. Otherwise data[] is unaltered. * * Return number of symbols corrected, or -1 if codeword is illegal * or uncorrectable. * * First "no_eras" erasures are declared by the calling program. Then, the * maximum # of errors correctable is t_after_eras = floor((NN-KK-no_eras)/2). * If the number of channel errors is not greater than "t_after_eras" the * transmitted codeword will be recovered. Details of algorithm can be found * in R. Blahut's "Theory ... of Error-Correcting Codes". */ int eras_dec_rs(dtype data[NN], int eras_pos[NN-KK], int no_eras) { int deg_lambda, el, deg_omega; int i, j, r; gf u,q,tmp,num1,num2,den,discr_r; gf recd[NN]; gf lambda[NN-KK + 1], s[NN-KK + 1]; /* Err+Eras Locator poly * and syndrome poly */ gf b[NN-KK + 1], t[NN-KK + 1], omega[NN-KK + 1]; gf root[NN-KK], reg[NN-KK + 1], loc[NN-KK]; int syn_error, count; /* data[] is in polynomial form, copy and convert to index form */ for (i = NN-1; i >= 0; i--){ #if (MM != 8) if(data[i] > NN) return -1; /* Illegal symbol */ #endif recd[i] = Index_of[data[i]]; } /* first form the syndromes; i.e., evaluate recd(x) at roots of g(x) * namely @**(B0+i), i = 0, ... ,(NN-KK-1) */ syn_error = 0; for (i = 1; i <= NN-KK; i++) { tmp = 0; for (j = 0; j < NN; j++) if (recd[j] != A0) /* recd[j] in index form */ tmp ^= Alpha_to[modnn(recd[j] + (B0+i-1)*j)]; syn_error |= tmp; /* set flag if non-zero syndrome => * error */ /* store syndrome in index form */ s[i] = Index_of[tmp]; } if (!syn_error) { /* * if syndrome is zero, data[] is a codeword and there are no * errors to correct. So return data[] unmodified */ return 0; } CLEAR(&lambda[1],NN-KK); lambda[0] = 1; if (no_eras > 0) { /* Init lambda to be the erasure locator polynomial */ lambda[1] = Alpha_to[eras_pos[0]]; for (i = 1; i < no_eras; i++) { u = eras_pos[i]; for (j = i+1; j > 0; j--) { tmp = Index_of[lambda[j - 1]]; if(tmp != A0) lambda[j] ^= Alpha_to[modnn(u + tmp)]; } } #ifdef ERASURE_DEBUG /* find roots of the erasure location polynomial */ for(i=1;i<=no_eras;i++) reg[i] = Index_of[lambda[i]]; count = 0; for (i = 1; i <= NN; i++) { q = 1; for (j = 1; j <= no_eras; j++) if (reg[j] != A0) { reg[j] = modnn(reg[j] + j); q ^= Alpha_to[reg[j]]; } if (!q) { /* store root and error location * number indices */ root[count] = i; loc[count] = NN - i; count++; } } if (count != no_eras) { printf("\n lambda(x) is WRONG\n"); return -1; } #ifndef NO_PRINT printf("\n Erasure positions as determined by roots of Eras Loc Poly:\n"); for (i = 0; i < count; i++) printf("%d ", loc[i]); printf("\n"); #endif #endif } for(i=0;i<NN-KK+1;i++) b[i] = Index_of[lambda[i]]; /* * Begin Berlekamp-Massey algorithm to determine error+erasure * locator polynomial */ r = no_eras; el = no_eras; while (++r <= NN-KK) { /* r is the step number */ /* Compute discrepancy at the r-th step in poly-form */ discr_r = 0; for (i = 0; i < r; i++){ if ((lambda[i] != 0) && (s[r - i] != A0)) { discr_r ^= Alpha_to[modnn(Index_of[lambda[i]] + s[r - i])]; } } discr_r = Index_of[discr_r]; /* Index form */ if (discr_r == A0) { /* 2 lines below: B(x) <-- x*B(x) */ COPYDOWN(&b[1],b,NN-KK); b[0] = A0; } else { /* 7 lines below: T(x) <-- lambda(x) - discr_r*x*b(x) */ t[0] = lambda[0]; for (i = 0 ; i < NN-KK; i++) { if(b[i] != A0) t[i+1] = lambda[i+1] ^ Alpha_to[modnn(discr_r + b[i])]; else t[i+1] = lambda[i+1]; } if (2 * el <= r + no_eras - 1) { el = r + no_eras - el; /* * 2 lines below: B(x) <-- inv(discr_r) * * lambda(x) */ for (i = 0; i <= NN-KK; i++) b[i] = (lambda[i] == 0) ? A0 : modnn(Index_of[lambda[i]] - discr_r + NN); } else { /* 2 lines below: B(x) <-- x*B(x) */ COPYDOWN(&b[1],b,NN-KK); b[0] = A0; } COPY(lambda,t,NN-KK+1); } } /* Convert lambda to index form and compute deg(lambda(x)) */ deg_lambda = 0; for(i=0;i<NN-KK+1;i++){ lambda[i] = Index_of[lambda[i]]; if(lambda[i] != A0) deg_lambda = i; } /* * Find roots of the error+erasure locator polynomial. By Chien * Search */ COPY(®[1],&lambda[1],NN-KK); count = 0; /* Number of roots of lambda(x) */ for (i = 1; i <= NN; i++) { q = 1; for (j = deg_lambda; j > 0; j--) if (reg[j] != A0) { reg[j] = modnn(reg[j] + j); q ^= Alpha_to[reg[j]]; } if (!q) { /* store root (index-form) and error location number */ root[count] = i; loc[count] = NN - i; count++; } } #ifdef DEBUG printf("\n Final error positions:\t"); for (i = 0; i < count; i++) printf("%d ", loc[i]); printf("\n"); #endif if (deg_lambda != count) { /* * deg(lambda) unequal to number of roots => uncorrectable * error detected */ return -1; } /* * Compute err+eras evaluator poly omega(x) = s(x)*lambda(x) (modulo * x**(NN-KK)). in index form. Also find deg(omega). */ deg_omega = 0; for (i = 0; i < NN-KK;i++){ tmp = 0; j = (deg_lambda < i) ? deg_lambda : i; for(;j >= 0; j--){ if ((s[i + 1 - j] != A0) && (lambda[j] != A0)) tmp ^= Alpha_to[modnn(s[i + 1 - j] + lambda[j])]; } if(tmp != 0) deg_omega = i; omega[i] = Index_of[tmp]; } omega[NN-KK] = A0; /* * Compute error values in poly-form. num1 = omega(inv(X(l))), num2 = * inv(X(l))**(B0-1) and den = lambda_pr(inv(X(l))) all in poly-form */ for (j = count-1; j >=0; j--) { num1 = 0; for (i = deg_omega; i >= 0; i--) { if (omega[i] != A0) num1 ^= Alpha_to[modnn(omega[i] + i * root[j])]; } num2 = Alpha_to[modnn(root[j] * (B0 - 1) + NN)]; den = 0; /* lambda[i+1] for i even is the formal derivative lambda_pr of lambda[i] */ for (i = min(deg_lambda,NN-KK-1) & ~1; i >= 0; i -=2) { if(lambda[i+1] != A0) den ^= Alpha_to[modnn(lambda[i+1] + i * root[j])]; } if (den == 0) { #ifdef DEBUG printf("\n ERROR: denominator = 0\n"); #endif return -1; } /* Apply error to data */ if (num1 != 0) { data[loc[j]] ^= Alpha_to[modnn(Index_of[num1] + Index_of[num2] + NN - Index_of[den])]; } } return count; }
arnaudl@answer-systems.com says:
Hello!My name is Arnaud and presentely I work for the Answer-systems company in France.
In fact I also made an ANSI C code in order to code and decode RS codes from 2^1 -1 to 2^24 -1.I also use arrays to store the galois fields elements but I would like to know if you knew something about the "division-free berlekamp-Massey" that could get rid of the inversion needed or a way to compute it efficientely. The main goal of my project is to implement the whole algorithm into a FPGA and it would be interesting to replace the arrays needed to store the galois fields elements by simple dedicated GF multiplier! So if you knew something I would be really greatful! Thanks for answering me! Arnaud
Interested:
Code:
Questions:
http://www.ka9q.net/code/fec/ hello, is there a c++ version of this code? I found one at the link below, buti wonder if there are any newer versions. And also, according to this decoder, it seems to deal with the erasures as errors which is not supposed to be the case. There is a formula 2*Errors + Erasures < NN-KK and if there are only erasures and no errors then it should be able to correct up to NN-KK erasures. Can this program do that? Thank you for your answer. Patrick