/* * File: bch4836.c * Author: Robert Morelos-Zaragoza * * %%%%%%%%%%% Encoder/Decoder for a (48, 36, 5) binary BCH code %%%%%%%%%%%%% * * This code is used in control channels for cellular TDMA in the U.S.A. * * In this specific case, there is no need to use the Berlekamp-Massey * algorithm, since the error locator polynomial is of at most degree 2. * Instead, we simply solve by hand two simultaneous equations to give * the coefficients of the error locator polynomial in the case of two * errors. In the case of one error, the location is given by the first * syndrome. * * This program derivates from the original bch2.c, which was written * to simulate the encoding/decoding of primitive binary BCH codes. * Part of this program is adapted from a Reed-Solomon encoder/decoder * program, 'rs.c', to the binary case. * * rs.c by Simon Rockliff, University of Adelaide, 21/9/89 * bch2.c by Robert Morelos-Zaragoza, University of Hawaii, 5/19/92 * * COPYRIGHT NOTICE: This computer program is free for non-commercial purposes. * You may implement this program for any non-commercial application. You may * also implement this program for commercial purposes, provided that you * obtain my written permission. Any modification of this program is covered * by this copyright. * * %%%% Copyright 1994 (c) Robert Morelos-Zaragoza. All rights reserved. %%%%% * * m = order of the field GF(2**6) = 6 * n = 2**6 - 1 - 15 = 48 = length * t = 2 = error correcting capability * d = 2*t + 1 = 5 = designed minimum distance * k = n - deg(g(x)) = 36 = dimension * p[] = coefficients of primitive polynomial used to generate GF(2**6) * g[] = coefficients of generator polynomial, g(x) * alpha_to [] = log table of GF(2**6) * index_of[] = antilog table of GF(2**6) * data[] = coefficients of data polynomial, i(x) * bb[] = coefficients of redundancy polynomial ( x**(12) i(x) ) modulo g(x) * numerr = number of errors * errpos[] = error positions * recd[] = coefficients of received polynomial * decerror = number of decoding errors (in MESSAGE positions) * */ #include #include int m = 6, n = 63, k = 36, t = 2, d = 5; int length = 48; int p[7]; /* irreducible polynomial */ int alpha_to[64], index_of[64], g[13]; int recd[48], data[36], bb[13]; int numerr, errpos[64], decerror = 0; int seed; void read_p() /* Primitive polynomial of degree 6 */ { register int i; p[0] = p[1] = p[6] = 1; p[2] = p[3] = p[4] = p[5] =0; } void generate_gf() /* * generate GF(2**m) from the irreducible polynomial p(X) in p[0]..p[m] * lookup tables: index->polynomial form alpha_to[] contains j=alpha**i; * polynomial form -> index form index_of[j=alpha**i] = i alpha=2 is the * primitive element of GF(2**m) */ { register int i, mask; mask = 1; alpha_to[m] = 0; for (i = 0; i < m; i++) { alpha_to[i] = mask; index_of[alpha_to[i]] = i; if (p[i] != 0) alpha_to[m] ^= mask; mask <<= 1; } index_of[alpha_to[m]] = m; mask >>= 1; for (i = m + 1; i < n; i++) { if (alpha_to[i - 1] >= mask) alpha_to[i] = alpha_to[m] ^ ((alpha_to[i - 1] ^ mask) << 1); else alpha_to[i] = alpha_to[i - 1] << 1; index_of[alpha_to[i]] = i; } index_of[0] = -1; } void gen_poly() /* * Compute generator polynomial of BCH code of length = 48, redundancy = 12 * (OK, this is not very efficient, but we only do it once, right? :) */ { register int ii, jj, ll, kaux; int test, aux, nocycles, root, noterms, rdncy; int cycle[13][7], size[13], min[13], zeros[13]; /* Generate cycle sets modulo 63 */ cycle[0][0] = 0; size[0] = 1; cycle[1][0] = 1; size[1] = 1; jj = 1; /* cycle set index */ do { /* Generate the jj-th cycle set */ ii = 0; do { ii++; cycle[jj][ii] = (cycle[jj][ii - 1] * 2) % n; size[jj]++; aux = (cycle[jj][ii] * 2) % n; } while (aux != cycle[jj][0]); /* Next cycle set representative */ ll = 0; do { ll++; test = 0; for (ii = 1; ((ii <= jj) && (!test)); ii++) /* Examine previous cycle sets */ for (kaux = 0; ((kaux < size[ii]) && (!test)); kaux++) if (ll == cycle[ii][kaux]) test = 1; } while ((test) && (ll < (n - 1))); if (!(test)) { jj++; /* next cycle set index */ cycle[jj][0] = ll; size[jj] = 1; } } while (ll < (n - 1)); nocycles = jj; /* number of cycle sets modulo n */ /* Search for roots 1, 2, ..., d-1 in cycle sets */ kaux = 0; rdncy = 0; for (ii = 1; ii <= nocycles; ii++) { min[kaux] = 0; for (jj = 0; jj < size[ii]; jj++) for (root = 1; root < d; root++) if (root == cycle[ii][jj]) min[kaux] = ii; if (min[kaux]) { rdncy += size[min[kaux]]; kaux++; } } noterms = kaux; kaux = 1; for (ii = 0; ii < noterms; ii++) for (jj = 0; jj < size[min[ii]]; jj++) { zeros[kaux] = cycle[min[ii]][jj]; kaux++; } printf("This is a (%d, %d, %d) binary BCH code\n", length, k, d); /* Compute generator polynomial */ g[0] = alpha_to[zeros[1]]; g[1] = 1; /* g(x) = (X + zeros[1]) initially */ for (ii = 2; ii <= rdncy; ii++) { g[ii] = 1; for (jj = ii - 1; jj > 0; jj--) if (g[jj] != 0) g[jj] = g[jj - 1] ^ alpha_to[(index_of[g[jj]] + zeros[ii]) % n]; else g[jj] = g[jj - 1]; g[0] = alpha_to[(index_of[g[0]] + zeros[ii]) % n]; } printf("g(x) = "); for (ii = 0; ii <= rdncy; ii++) { printf("%d", g[ii]); if (ii && ((ii % 70) == 0)) printf("\n"); } printf("\n"); } void encode_bch() /* * Calculate redundant bits bb[], codeword is c(X) = data(X)*X**(n-k)+ bb(X) */ { register int i, j; register int feedback; for (i = 0; i < length - k; i++) bb[i] = 0; for (i = k - 1; i >= 0; i--) { feedback = data[i] ^ bb[length - k - 1]; if (feedback != 0) { for (j = length - k - 1; j > 0; j--) if (g[j] != 0) bb[j] = bb[j - 1] ^ feedback; else bb[j] = bb[j - 1]; bb[0] = g[0] && feedback; } else { for (j = length - k - 1; j > 0; j--) bb[j] = bb[j - 1]; bb[0] = 0; }; }; }; void decode_bch() /* * We do not need the Berlekamp algorithm to decode. * We solve before hand two equations in two variables. */ { register int i, j, q; int elp[3], s[5], s3; int count = 0, syn_error = 0; int loc[3], err[3], reg[3]; int aux; /* first form the syndromes */ printf("s[] = ("); for (i = 1; i <= 4; i++) { s[i] = 0; for (j = 0; j < length; j++) if (recd[j] != 0) s[i] ^= alpha_to[(i * j) % n]; if (s[i] != 0) syn_error = 1; /* set flag if non-zero syndrome */ /* NOTE: If only error detection is needed, * then exit the program here... */ /* convert syndrome from polynomial form to index form */ s[i] = index_of[s[i]]; printf("%3d ", s[i]); }; printf(")\n"); if (syn_error) { /* If there are errors, try to correct them */ if (s[1] != -1) { s3 = (s[1] * 3) % n; if ( s[3] == s3 ) /* Was it a single error ? */ { printf("One error at %d\n", s[1]); recd[s[1]] ^= 1; /* Yes: Correct it */ } else { /* Assume two errors occurred and solve * for the coefficients of sigma(x), the * error locator polynomail */ if (s[3] != -1) aux = alpha_to[s3] ^ alpha_to[s[3]]; else aux = alpha_to[s3]; elp[0] = 0; elp[1] = (s[2] - index_of[aux] + n) % n; elp[2] = (s[1] - index_of[aux] + n) % n; printf("sigma(x) = "); for (i = 0; i <= 2; i++) printf("%3d ", elp[i]); printf("\n"); printf("Roots: "); /* find roots of the error location polynomial */ for (i = 1; i <= 2; i++) reg[i] = elp[i]; count = 0; for (i = 1; i <= 63; i++) { /* Chien search */ q = 1; for (j = 1; j <= 2; j++) if (reg[j] != -1) { reg[j] = (reg[j] + j) % n; q ^= alpha_to[reg[j]]; } if (!q) { /* store error location number indices */ loc[count] = i % n; count++; printf("%3d ", (i%n)); } } printf("\n"); if (count == 2) /* no. roots = degree of elp hence 2 errors */ for (i = 0; i < 2; i++) recd[loc[i]] ^= 1; else /* Cannot solve: Error detection */ printf("incomplete decoding\n"); } } else if (s[2] != -1) /* Error detection */ printf("incomplete decoding\n"); } } main() { int i; read_p(); /* read generator polynomial g(x) */ generate_gf(); /* generate the Galois Field GF(2**m) */ gen_poly(); /* Compute the generator polynomial of BCH code */ seed = 1; srandom(seed); /* Randomly generate DATA */ for (i = 0; i < k; i++) data[i] = (random() & 67108864) >> 26; /* ENCODE */ encode_bch(); /* encode data */ for (i = 0; i < length - k; i++) recd[i] = bb[i]; /* first (length-k) bits are redundancy */ for (i = 0; i < k; i++) recd[i + length - k] = data[i]; /* last k bits are data */ printf("c(x) = "); for (i = 0; i < length; i++) { printf("%1d", recd[i]); if (i && ((i % 70) == 0)) printf("\n"); } printf("\n"); /* ERRORS */ printf("Enter the number of errors and their positions: "); scanf("%d", &numerr); for (i = 0; i < numerr; i++) { scanf("%d", &errpos[i]); recd[errpos[i]] ^= 1; } printf("r(x) = "); for (i = 0; i < length; i++) printf("%1d", recd[i]); printf("\n"); /* DECODE */ decode_bch(); /* * print out original and decoded data */ printf("Results:\n"); printf("original data = "); for (i = 0; i < k; i++) printf("%1d", data[i]); printf("\nrecovered data = "); for (i = length - k; i < length; i++) printf("%1d", recd[i]); printf("\n"); /* decoding errors: we compare only the data portion */ for (i = length - k; i < length; i++) if (data[i - length + k] != recd[i]) decerror++; if (decerror) printf("%d message decoding errors\n", decerror); else printf("Succesful decoding\n"); }