/* mkfilter -- given n, compute recurrence relation to implement Butterworth, Bessel or Chebyshev filter of order n A.J. Fisher, University of York September 1992 */ /* Routines for complex arithmetic */ #include #include #include "mkfilter.h" #include "complex.h" static complex eval(complex[], int, complex); static double Xsqrt(double); global complex evaluate(complex topco[], int nz, complex botco[], int np, complex z) { /* evaluate response, substituting for z */ return eval(topco, nz, z) / eval(botco, np, z); } static complex eval(complex coeffs[], int npz, complex z) { /* evaluate polynomial in z, substituting for z */ complex sum = complex(0.0); for (int i = npz; i >= 0; i--) sum = (sum * z) + coeffs[i]; return sum; } global complex csqrt(complex x) { double r = hypot(x); complex z = complex(Xsqrt(0.5 * (r + x.re)), Xsqrt(0.5 * (r - x.re))); if (x.im < 0.0) z.im = -z.im; return z; } static double Xsqrt(double x) { /* because of deficiencies in hypot on Sparc, it's possible for arg of Xsqrt to be small and -ve, which logically it can't be (since r >= |x.re|). Take it as 0. */ return (x >= 0.0) ? sqrt(x) : 0.0; } global complex cexp(complex z) { return exp(z.re) * expj(z.im); } global complex expj(double theta) { return complex(cos(theta), sin(theta)); } global complex operator * (complex z1, complex z2) { return complex(z1.re*z2.re - z1.im*z2.im, z1.re*z2.im + z1.im*z2.re); } global complex operator / (complex z1, complex z2) { double mag = (z2.re * z2.re) + (z2.im * z2.im); return complex (((z1.re * z2.re) + (z1.im * z2.im)) / mag, ((z1.im * z2.re) - (z1.re * z2.im)) / mag); }