Product comparison matrix
available from Jameco, Arrow, Avnet, Marshall
See also:
Schematic for the download cable.SRAM Address Generator and Chip Enable Controller intended for use with PIC16Cxx processors using Port D for a data bus and Port E for control. It supports standard memory devices up to 512K Bytes and provides 4 auxiliary Chip Enables. This version has reduced propagation delays and better documentation.
a 28-Bit Programmable Comparator with Bit-Enable ("Don't Care" Bits). It uses an SPI-style serial interface to load the Bit-Enable qualifiers and the Comparator data. This data is compared with the 28 Inputs to generate an Equality Output. Inputs with their corresponding Bit-Enables cleared are ignored. It also provides a Serial Data Output and an Enable Input to support expansion. One application is a 28-Bit Trigger Comparator in a Logic Analyzer. In this version, I was able to `squeeze' 4 more Bits out of the design and reduce the propagation delays from the Comparator Inputs to the Equality Output by 9ns for the 100MHz device.
This is a 32-Bit Buffered Serial Latch. It uses an SPI-style serial interface to load a 32-Bit Shift Register. The 32-Bit Buffered Latch accepts 32 Bits of data clocked in MSB-first on the SDI (Serial Data In) pin. Data is transferred to the 32-Bit Output Latches on the Rising Edge of the LE (Latch Enable) pin. This is similar to four 74xx595s. An Active-Low Global Reset clears all outputs. All pins have active Pull-ups.
This is a 32-Bit Parallel Input, Serial Output, Shift Register with an SPI-style interface. The 32-Bit Inputs are simultaneously transferred to a 32-Bit Shift Register on the Rising Edge of SCLK when LD1/LD2 (Load Data) are High. Data is then clocked out of the Register MSB-first on the SDO (Serial Data Out) pin. All pins have active Pull-ups.
This is a combination 16-Bit Input, Serial Output, Shift Register and Serial Input, 16-Bit Output, Buffered Latch with an SPI-style interface. An Active-Low Global Reset clears all registers. All pins have active Pull-ups. The 16-Bit Inputs are simultaneously transferred to a 16-Bit Shift Register on the Rising Edge of SCLK when LD (Load Data) is High. Data is then clocked out of the Register MSB-first on the SDO (Serial Data Out) pin. The 16-Bit Buffered Latch accepts 16 Bits of data clocked in MSB-first on the SDI (Serial Data In) pin. Data is transferred to the 16-Bit Output Latches on the Rising Edge of the LE (Latch Enable) pin.
Comments: