Contributor: RANDALL ELTON DING { randyd@csd4.csd.uwm.edu (Randall Elton Ding) This is really for Allen who earlier in the month asked about generating a maze in pascal. It may not really be the fastest, but I know of no other way which is faster. Check it out, it lets you try to move thru the maze, when you give up it shows you the way. It has variable difficulty and size too. This was origionally written in Apple][ 6502 machine language, I ported it over to pascal a few years later. } (* Big Mind Over Maze maze generator and solver created by Randy Ding July 16,1983*) {$R-} { range checking } program makemaze; uses crt, graph; const screenwidth = 640; screenheight = 350; minblockwidth = 2; maxx = 200; { [3 * maxx * maxy] must be less than 65520 (memory segment) } maxy = 109; { here maxx/maxy about equil to screenwidth/screenheight } flistsize = 5000; { flist size (fnum max, about 1/3 of maxx * maxy) } background = black; gridcolor = green; solvecolor = white; rightdir = $01; updir = $02; leftdir = $04; downdir = $08; unused = $00; { cell types used as flag bits } frontier = $10; reserved = $20; tree = $30; type frec = record column, row : byte; end; farr = array [1..flistsize] of frec; cellrec = record point : word; { pointer to flist record } flags : byte; end; cellarr = array [1..maxx,1..maxy] of cellrec; { one byte per cell, flag bits... 0: right, 1 = barrier removed 1: top " 2: left " 3: bottom " 5,4: 0,0 = unused cell type 0,1 = frontier " 1,1 = tree " 1,0 = reserved " 6: (not used) 7: solve path, 1 = this cell part of solve path } var flist : farr; { list of frontier cells in random order } cell : ^cellarr; { pointers and flags, on heap } fnum, width, height, blockwidth, halfblock, maxrun : word; runset : byte; ch : char; procedure initbgi; var grdriver, grmode, errcode : integer; begin grdriver := DETECT; grmode := EGAhi; initgraph(grdriver, grmode, 'e:\bp\bgi'); errcode:= graphresult; if errcode <> grok then begin writeln('Graphics error: ', grapherrormsg(errcode)); halt(1); end; end; function adjust(var x, y : word; d : byte) : boolean; begin { take x,y to next cell in direction d } case d of { returns false if new x,y is off grid } rightdir: begin inc (x); adjust:= x <= width; end; updir: begin dec (y); adjust:= y > 0; end; leftdir: begin dec (x); adjust:= x > 0; end; downdir: begin inc (y); adjust:= y <= height; end; end; end; procedure remove(x, y : word); { remove a frontier cell from flist } var i : word; { done by moving last entry in flist into it's place } begin i := cell^[x,y].point; { old pointer } with flist[fnum] do cell^[column,row].point := i; { move pointer } flist[i] := flist[fnum]; { move data } dec(fnum); { one less to worry about } end; procedure add(x, y : word; d : byte); { add a frontier cell to flist } var i : byte; begin i := cell^[x,y].flags; case i and $30 of { check cell type } unused : begin cell^[x,y].flags := i or frontier; { change to frontier cell } inc(fnum); { have one more to worry about } if fnum > flistsize then begin { flist overflow error! } dispose(cell); { clean up memory } closegraph; writeln('flist overflow! - To correct, increase "flistsize"'); write('hit return to halt program '); readln; halt(1); { exit program } end; with flist[fnum] do begin { copy data into last entry of flist } column := x; row := y; end; cell^[x,y].point := fnum; { make the pointer point to the new cell } runset := runset or d; { indicate that a cell in direction d was } end; { added to the flist } frontier : runset := runset or d; { allready in flist } end; end; procedure addfront(x, y : word); { change all unused cells around this } var { base cell to frontier cells } j, k : word; d : byte; begin remove(x, y); { first remove base cell from flist, it is now } runset := 0; { part of the tree } cell^[x,y].flags := cell^[x,y].flags or tree; { change to tree cell } d := $01; { look in all four directions- $01,$02,$04,$08 } while d <= $08 do begin j := x; k := y; if adjust(j, k, d) then add(j, k, d); { add only if still in bounds } d := d shl 1; { try next direction } end; end; procedure remline(x, y : word; d : byte); { erase line connecting two blocks } begin setcolor(background); x := (x - 1) * blockwidth; y := (y - 1) * blockwidth; case d of rightdir : line (x + blockwidth, y + 1, x + blockwidth, y + blockwidth - 1); updir : line (x + 1, y, x + blockwidth - 1, y); leftdir : line (x, y + 1, x, y + blockwidth - 1); downdir : line (x + 1, y + blockwidth, x + blockwidth - 1, y + blockwidth); end; end; { erase line and update flags to indicate the barrier has been removed } procedure rembar(x, y : word; d : byte); var d2 : byte; begin remline(x, y, d); { erase line } cell^[x,y].flags := cell^[x,y].flags or d; { show barrier removed dir. d } d2 := d shl 2; { shift left twice to reverse direction } if d2 > $08 then d2 := d2 shr 4; { wrap around } if adjust(x, y, d) then { do again from adjacent cell back to base cell } cell^[x,y].flags := cell^[x,y].flags or d2; { skip if out of bounds } end; function randomdir : byte; { get a random direction } begin case random(4) of 0 : randomdir := rightdir; 1 : randomdir := updir; 2 : randomdir := leftdir; 3 : randomdir := downdir; end; end; procedure connect(x, y : word); { connect this new branch to the tree } var { in a random direction } j, k : word; d : byte; found : boolean; begin found := false; while not found do begin { loop until we find a tree cell to connect to } j := x; k := y; d := randomdir; if adjust(j, k, d) then found := cell^[j,k].flags and $30 = tree; end; rembar(x, y, d); { remove barrier connecting the cells } end; procedure branch(x, y : word); { make a new branch of the tree } var runnum : word; d : byte; i : boolean; begin runnum := maxrun; { max number of tree cells to add to a branch } connect(x, y); { first connect frontier cell to the tree } addfront(x, y); { convert neighboring unused cells to frontier } dec(runnum); { number of tree cells left to add to this branch } while (runnum > 0) and (fnum > 0) and (runset > 0) do begin repeat d := randomdir; until d and runset > 0; { pick random direction to known frontier } rembar(x, y, d); { and make it part of the tree } i := adjust(x, y, d); addfront(x, y); { then pick up the neighboring frontier cells } dec(runnum); end; end; procedure drawmaze; var x, y, i : word; begin setcolor(gridcolor); { draw the grid } y := height * blockwidth; for i := 0 to width do begin x := i * blockwidth; line(x, 0, x, y); end; x := width * blockwidth; for i := 0 to height do begin y := i * blockwidth; line (0, y, x, y); end; fillchar(cell^, sizeof(cell^), chr(0)); { zero flags } fnum := 0; { number of frontier cells in flist } runset := 0; { directions to known frontier cells from a base cell } randomize; x := random(width) + 1; { pick random start cell } y := random(height) + 1; add(x, y, rightdir); { direction ignored } addfront(x, y); { start with 1 tree cell and some frontier cells } while (fnum > 0) do with flist[random(fnum) + 1] do branch(column, row); end; procedure dot(x, y, colr : word); begin putpixel(blockwidth * x - halfblock, blockwidth * y - halfblock, colr); end; procedure solve(x, y, endx, endy : word); var j, k : word; d : byte; i : boolean; begin d := rightdir; { starting from left side of maze going right } while (x <> endx) or (y <> endy) do begin if d = $01 then d := $08 else d := d shr 1; { look right, hug right wall } while cell^[x,y].flags and d = 0 do begin { look for an opening } d := d shl 1; { if no opening, turn left } if d > $08 then d := d shr 4; end; j := x; k := y; i := adjust(x, y, d); { go in that direction } with cell^[j,k] do begin { turn on dot, off if we were here before } flags := ((((cell^[x,y].flags xor $80) xor flags) and $80) xor flags); if flags and $80 <> 0 then dot(j, k, solvecolor) else dot(j, k, background); end; end; dot(endx, endy, solvecolor); { dot last cell on } end; procedure mansolve (x,y,endx,endy: word); var j, k : word; d : byte; ch : char; begin ch := ' '; while ((x <> endx) or (y <> endy)) and (ch <> 'X') and (ch <> #27) do begin dot(x, y, solvecolor); { dot man on, show where we are in maze } ch := upcase(readkey); dot(x, y, background); { dot man off after keypress } d := 0; case ch of #0: begin ch := readkey; case ch of #72 : d := updir; #75 : d := leftdir; #77 : d := rightdir; #80 : d := downdir; end; end; 'I' : d := updir; 'J' : d := leftdir; 'K' : d := rightdir; 'M' : d := downdir; end; if d > 0 then begin j := x; k := y; { move if no wall and still in bounds } if (cell^[x,y].flags and d > 0) and adjust(j, k, d) then begin x := j; y := k; end; end; end; end; procedure solvemaze; var x, y, endx, endy : word; ch : char; begin x := 1; { pick random start on left side wall } y := random(height) + 1; endx := width; { pick random end on right side wall } endy := random(height) + 1; remline(x, y, leftdir); { show start and end by erasing line } remline(endx, endy, rightdir); mansolve(x, y, endx, endy); { try it manually } solve(x, y, endx, endy); { show how when he gives up } while keypressed do ch := readkey; ch := readkey; end; procedure getsize; var j, k : real; begin clrscr; writeln(' Mind'); writeln(' Over'); writeln(' Maze'); writeln; writeln(' by Randy Ding'); writeln; writeln('Use I,J,K,M or arrow keys to walk thru maze,'); writeln('then hit X when you give up!'); repeat writeln; write('Maze size: ', minblockwidth, ' (hard) .. 95 (easy) '); readln(blockwidth); until (blockwidth >= minblockwidth) and (blockwidth < 96); writeln; write('Maximum branch length: 1 easy .. 50 harder, (0 unlimited) '); readln(maxrun); if maxrun <= 0 then maxrun := 65535; { infinite } j := screenwidth / blockwidth; k := screenheight / blockwidth; if j = int(j) then j := j - 1; if k = int(k) then k := k - 1; width := trunc(j); height := trunc(k); if (width > maxx) or (height > maxy) then begin width := maxx; height := maxy; end; halfblock := blockwidth div 2; end; begin repeat getsize; initbgi; new(cell); { allocate this large array on heap } drawmaze; solvemaze; dispose(cell); closegraph; while keypressed do ch := readkey; write ('another one? '); ch := upcase (readkey); until (ch = 'N') or (ch = #27); end.