Contributor: STEVE ROGERS {Just for grins, here's a complex number unit I wrote come time back:} unit complex; (* polar/rectangular conversions and complex math Steve Rogers, ~1993 *) {----------------------} interface type tComplex=record r, { real component } x { imaginary component } : real; end; procedure r2p(var r,p : tComplex); procedure p2r(var p,r : tComplex); procedure c_add(var c1,c2,c3 : tComplex); procedure c_sub(var c1,c2,c3 : tComplex); procedure c_mult(var c1,c2,c3 : tComplex); procedure c_div(var c1,c2,c3 : tComplex); implementation const RADS=0.0174532; { degree to radian conversion constant } {----------------------} procedure r2p(var r,p : tComplex); { returns polar in degrees in p, given rectangular in r } begin p.r:= sqrt(sqr(r.r)+sqr(r.x)); p.x:= arctan(r.x/r.r)/RADS; end; {----------------------} procedure p2r(var p,r : tComplex); { returns rectangular in r, given polar in degrees in p } begin r.r:= p.r*cos(p.x*RADS); r.x:= p.r*sin(p.x*RADS); end; {----------------------} procedure c_add(var c1,c2,c3 : tComplex); { adds c2 to c1, places result in c3 } begin c3.r:= c1.r+c2.r; c3.x:= c1.x+c2.x; end; {----------------------} procedure c_sub(var c1,c2,c3 : tComplex); { subtracts c2 from c1, places result in c3 } begin c3.r:= c1.r-c2.r; c3.x:= c1.x-c2.x; end; {----------------------} procedure c_mult(var c1,c2,c3 : tComplex); { multiplies c1 by c2, places result in c3 } begin c3.r:= (c1.r*c2.r)-(c1.x*c2.x); c3.x:= (c1.r*c2.x)+(c1.x*c2.r); end; {----------------------} procedure c_div(var c1,c2,c3 : tComplex); { divides c1 by c2, places result in c3 } var p1,p2,p3 : tComplex; begin r2p(c1,p1); { convert c1 to polar form } r2p(c2,p2); { convert c2 to polar form } p3.r:= p1.r/p2.r; { divide real component } p3.x:= p1.x-p2.x; { subtract imaginary component } if (p3.x<0) then p3.x:= p3.x+180; { Pretty it up } p2r(p3,c3); { convert c3 back to rectangular } end;