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IEEE Standard Signaling Method for a
Bidirectional Parallel Peripheral
Interface for Personal Computers

1 Overview

1.1 Scope
This standard defines a signaling method for asynchronous, fully interlocked, bidirectional parallel commu-
nications between hosts and printers or other peripherals. A functional subset of the signaling method may
be implemented on personal computers (PCs) or equivalent parallel port hardware with new software. This
standard recommends new electrical interfaces, cabling, and interface hardware that provides improved per-
formance while retaining backward compatibility with this subset.

This standard also specifies a format for a peripheral identification string and a method of returning this
string to the host outside of the bidirectional data stream.

1.2 Purpose

This standard was created because there existed no defined standard for bidirectional parallel communica-
tions between personal computers and printing peripherals. Pre-existing methods utilized a wide variety of
hardware and software products, each with unique and incompatible signaling schemes. This standard was
developed to provide an open path for communications between computers and more intelligent printers
and peripherals. The availability of a standard bidirectional protocol will encourage the development of new
peripherals that return significant data, as well as basic status, to the host.

2 References

This standard shall be used in conjunction with the following publications. If the following publications are
superseded by an approved revision, the revision shall apply.

IEC 950: 1991, Safety of information technology equipment, including electrical business equipment.1

                                                     
1IEC publications are available from IEC Sales Department, Case Postale 131, 3 rue de Varembé, CH-1211, Genève 20, Switzerland/
Suisse. IEC publications are also available in the United States from the Sales Department, American National Standards Institute, 11
West 42nd Street, 13th Floor, New York, NY 10036, USA.
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3 Definitions

3.1 General terminology
The following terms are used in this standard and/or may be used in conjunction with the signaling methods
defined in this standard. The definitions are not intended to be absolute, but they do reflect the use of the
terms in this standard.

3.1.1 bidirectional operation: When the peripheral and host communicate using both forward and
reverse data channels. As defined in this standard, Nibble and Byte Modes provide reverse channel
communication and are used in conjunction with Compatibility Mode to provide bidirectional operation.
Extended Capabilities Port (ECP) and Enhanced Parallel Port (EPP) Modes support bidirectional
communication.

3.1.2 Centronics: The popular name for the parallel printer port used as the parallel interface for most
printers and supported by most “MS-DOS compatible” PCs. The name is derived from the printer
manufacturer that introduced this interface, Centronics Data Computer Corporation. This interface has
never been formalized. Despite a basic similarity, many variations of this interface have been implemented
in different peripherals and hosts. This specification describes the more prevalent variations of the
“Centronics” interface and defines a family of signaling methods that are backward compatible with the
typical “Centronics” interface.

3.1.3 Centronics connector: The popular name for the 36-pin ribbon contact type connector commonly
used for the parallel port on printers. This connector is referred to as the “IEEE 1284-B” connector in this
standard.

3.1.4 command set: A field in the Device ID message identifying the type of data expected by the
peripheral. For example, a printer might use this field to report which page description language(s) it
supports.

3.1.5 compatible device: A device that supports any of a specified range of popular variants of the
“Centronics” interface. Compatible devices will interoperate with compliant devices in Compatibility Mode
only.

3.1.6 compliant device: A device that supports either the Level 1 or Level 2 electrical interface, plus
Compatible and Nibble Mode operation, as well as the negotiation phases necessary to transition between
these two modes.

3.1.7 device driver: A program that runs on the host and manages the sending and receiving of
information from the peripheral. The driver utilizes the link level interface defined in this standard to
communicate data between the application program and the peripheral personality.

3.1.8 Device ID: A structured, variable length ASCII message identifying the manufacturer, command
set, and model of the peripheral. The message is provided by the peripheral in response to a request issued
by the host during the negotiation phase. Provided that the peripheral supports the bidirectional mode
requested by the host, this message is provided in the requested mode. The Device ID is intended to assist
the host in selecting the device and/or peripheral driver appropriate to the peripheral.

3.1.9 forward channel: Data path from the host to the peripheral.

3.1.10 host: A device, typically a personal computer, that will control the communications with attached
peripherals.
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3.1.11 IEEE 1284-compatible device: See compatible device.

3.1.12 IEEE 1284-compliant device: See compliant device.

3.1.13 IEEE 1284-A connector: A plug or receptacle 25-pin subminiature D-shell connector, as
specified in 8.2 and shown in figure 24. This is the type of connector used on the MS-DOS compatible PC
printer port adapter.

3.1.14 IEEE 1284-B connector: A plug or receptacle 36-pin ribbon type connector, as specified in 8.2
and shown in figure 25. This type of connector is also known as a “Centronics Connector.”

3.1.15 IEEE 1284-C connector: A miniature plug or receptacle 36-pin ribbon type connector, as
specified in 8.2 and shown in figure 26.

3.1.16 Level 1 device: A device that supports the Level 1 electrical interface.

3.1.17 Level 2 device: A device that supports the Level 2 electrical interface.

3.1.18 link: The physical connection and electronic hardware by which data is transferred between the
host and the peripheral. This standard is concerned only with the link layer; the only information transfer
defined or required as part of this standard is that necessary to control and synchronize the communication
of peripheral data. The defined interface is transparent to the peripheral data communicated at data or
higher layers.

3.1.19 n: When preceding a capitalized signal name, denotes a signal having negative true logic.

3.1.20 PC parallel port: The parallel printer port used as the parallel interface for most printers and sup-
ported by most PCs. This interface has been variously defined by different PC and peripheral
manufacturers. This standard describes the more prevalent variations of the interface and defines a family of
signaling methods that are backward compatible with the typical PC parallel port.

3.1.21 peripheral: A device, attached to a host via a communication link.

3.1.22 peripheral personality: The characteristics of a language processor or operating environment that
a peripheral runs to interpret commands and data being sent.

3.1.23 reverse channel: Data path from the peripheral to the host.

3.1.24 solicited status: Information generated by the peripheral in response to a command from the host.

3.1.25 status: A term used generally to describe data generated by the peripheral that reflects the current
operating state of the peripheral.

3.1.26 status lines: Unidirectional signals from the peripheral to the host, defined in Compatibility Mode
to handshake data and to report error conditions. In other IEEE 1284 interface modes defined in this
standard, these lines are used for control, data, and/or status.

3.1.27 unidirectional operation: When the peripheral and host communicate data in one direction only.
Compatibility Mode is unidirectional in the forward direction; Byte and Nibble Modes are unidirectional in
the reverse direction.

3.1.28 unsolicited status: Information generated by the peripheral that has not been asked for by the host,
yet is important enough that the peripheral desires to send it to the host.
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3.2 Communication modes
NOTE—The signaling method described herein provides for several modes of host-peripheral communication. The
interface is initially in Compatibility Mode. Other modes provide additional features and/or improved performance.
Compliant devices can determine and switch to the most effective mode supported by both devices. All compliant
devices are required to support Compatibility Mode, Nibble Mode, and the negotiation necessary to switch between
communication modes.

3.2.1 Compatibility Mode: An asynchronous, byte-wide forward (host-to-peripheral) channel with data
and status lines used according to their original definitions. Compatibility Mode is backward compatible
with many existing devices, including the PC parallel port, and is the base mode common to all compliant
interfaces.

3.2.2 Nibble Mode: An asynchronous, reverse (peripheral-to-host) channel, under control of the host.
Data bytes are transmitted as two sequential, 4-b nibbles using four peripheral-to-host status lines. Nibble
Mode is used with Compatibility Mode to implement a bidirectional channel. These two modes cannot be
active simultaneously.

3.2.3 Byte Mode: An asynchronous, byte-wide reverse (peripheral-to-host) channel using the eight data
lines of the interface for data and the control/status lines for handshaking. Byte Mode is used with Compati-
bility Mode to implement a bidirectional channel, with transfer direction controlled by the host when the
host and peripheral both support bidirectional use of the data lines. The two modes cannot be active
simultaneously.

3.2.4 Extended Capabilities Port (ECP) Mode: An asynchronous, byte-wide, bidirectional channel.
An interlocked handshake replaces the minimum timing requirements of Compatibility Mode. A control line
is provided to distinguish between command and data transfers. A command may optionally be used to indi-
cate single-byte data compression or channel address.

3.2.5 Enhanced Parallel Port (EPP) Mode: An asynchronous, byte-wide, bidirectional channel
controlled by the host device. This mode provides separate address and data cycles over the eight data lines
of the interface.

3.3 Operating phases
NOTE—Interface operation is divided into a number of interface phases. Each communication mode consists of one or
more phases. Additional phases are defined to cover initialization and transitions between communication modes. The
names and interpretations of the interface signals may vary between phases, but are consistent within each phase.

3.3.1 Compatibility Mode phases

3.3.1.1 Compatibility Mode forward data transfer phase: Begins when the host asserts nStrobe and
ends following data hold time and nStrobe de-assertion. (Note that the host is not free to send the next data
byte until the peripheral acknowledges the transfer using nAck.) The host may not initiate negotiation to a
new operating mode until the interface returns to Compatibility Mode forward idle phase.

3.3.1.2 Compatibility Mode forward idle phase: When the interface is in Compatibility Mode with no
data transfer in progress. The host may initiate a data transfer in Compatibility Mode or may initiate negoti-
ation to a new operating mode.

3.3.2 Nibble and Byte Mode phases

3.3.2.1 reverse data transfer phase: When data transfers from the peripheral to the host.

3.3.2.2 reverse host busy data available phase: When the peripheral has data to transmit.
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3.3.2.3 reverse host busy data not available phase: When the peripheral has no more data to transmit.

3.3.2.4 reverse idle phase: When no data transfer is in progress and the host is waiting for peripheral
data. When data are available, the peripheral will cause the interface to go to the reverse interrupt phase.

3.3.2.5 reverse interrupt phase: A phase that provides the mechanism for the peripheral to alert the host
that it has data to transfer. While in this phase, the host may cause the interface to go to the termination
phase.

3.3.3 ECP Mode phases

3.3.3.1 ECP setup phase: A phase that sets the interface signals to the correct state for the ECP forward
transfer phase. It immediately follows the negotiation phase.

3.3.3.2 ECP forward transfer phase: When the host transfers data or commands to the peripheral using
HostClk. The peripheral may indicate its desire to send data to the host by asserting nPeriphRequest.

3.3.3.3 ECP forward idle phase: When no data transfer is in progress. The peripheral may indicate its
desire to communicate with the host by asserting nPeriphRequest. The host may cause the interface to go to
the forward to reverse phase, forward transfer phase, or the termination phase.

3.3.3.4 ECP forward to reverse phase: When the interface is changing from the forward direction to the
reverse direction.

3.3.3.5 ECP reverse transfer phase: When the peripheral transfers data or commands to the host. The
host may interrupt the peripheral, causing the interface to go to the reverse to forward phase.

3.3.3.6 ECP reverse idle phase: When no data transfer is in progress. The host may interrupt the
peripheral, causing the interface to go to the reverse to forward phase. The peripheral may cause the
interface to go to the reverse transfer phase or reverse to forward phase.

3.3.3.7 ECP reverse to forward phase: When the interface is changing from the reverse direction to the
forward direction.

3.3.4 EPP mode phases

3.3.4.1 EPP address read phase: When the host is performing an address read transfer operation.

3.3.4.2 EPP address write phase: When the host is performing an address write transfer operation.

3.3.4.3 EPP data read phase: When the host is performing a data read transfer operation.

3.3.4.4 EPP data write phase: When the host is performing a data write transfer operation.

3.3.4.5 EPP initial idle phase: A transition phase from negotiation phase to EPP Mode. After a transfer
operation (address or data read or write), the interface will enter the idle phase.

3.3.4.6 EPP idle phase: When no address or data transfer is in progress.

3.3.4.7 EPP termination phase: A host-initiated transition phase in which the interface is changed from
EPP Mode to Compatibility Mode.
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3.3.5 Additional phases

3.3.5.1 initialization phase: A phase that includes both power-on initialization and host-driven interface
reset.

3.3.5.2 negotiation phase: Signal handshaking to change the signaling method from Compatibility Mode
to Nibble, Byte, ECP, or EPP Mode.

3.3.5.3 power-on phase: A phase that includes power-on initialization for both devices.

3.3.5.4 termination phase: A host-initiated transition phase in which the interface is changed from
Nibble, Byte, or ECP Mode to Compatibility Mode.
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4 Features and compliance

4.1 Interface overview
This interface is a bidirectional extension of the existing PC parallel interface (commonly known as the
Centronics interface). The bidirectional communication occurs using the signals in the existing interface.
The interface supports a number of distinct communication modes, and the interpretation of interface
signals depends on the current mode. Compatibility Mode provides host-to-peripheral communication in a
manner compatible with the traditional unidirectional interface. Nibble and Byte Modes provide peripheral-
to-host communication and may be combined with Compatibility Mode to provide bidirectional operation.
ECP Mode provides symmetric bidirectional communications without the overhead of changing
communication modes. EPP Mode provides asymmetric bidirectional data transfer driven by the host
device. Not all devices support all communication modes. A mechanism is provided for the host and
peripheral to negotiate the mode to be used for data transfers and to re-negotiate as needed.

In Compatibility Mode, the host sends 8 b to the peripheral over the interface data signals D1 through D8.
In Nibble Mode, peripheral-to-host data bytes are sent as two sequential nibbles on the parallel port status
lines. In Byte Mode, ECP Mode, or EPP Mode, peripheral-to-host data bytes are sent on the parallel port
data signals. Each of these arrangements gives the interface at least two separate channels, one in each
direction. Having two channels allows peripheral-to-host data to be transferred even when the host-to-
peripheral data channel is blocked.

In the Nibble or Byte Mode, the host requests a reverse channel transfer, and the peripheral responds by
indicating whether there is data to be sent. If no data is ready to be sent, the host can enter the reverse idle
phase, in which the peripheral will indicate to the host when data becomes available. In the ECP or EPP
Modes, the host may read or write address or data information from or to the peripheral. The host may
return the link to the Compatibility Mode whenever the interface is in a “valid” state, which is uniquely
specified for each mode.

4.2 Features
This interface provides several capabilities to the user. These capabilities satisfy the following list of user
objectives.

a) This interface provides the capability to send data from the host computer to the peripheral at a
higher speed than previously done. This is accomplished by shortening the signal timing values
where possible.

b) This interface provides a path for data to be sent from the peripheral to the host using existing and
future parallel port hardware.

c) The reverse channel capability reduces the amount of user interaction needed to operate the periph-
eral. For example, application programs can ask a printer for a list of fonts currently available. The
application can then decide if new fonts must be downloaded, rather than ask the user.

4.3 Device compatibility criteria
Devices that meet the mechanical interface requirements of 8.2, the electrical requirements of 8.3.2, and the
protocol compatibility requirements of 7.3, but neither the compliance requirements of that subclause nor
the additional protocols of 7.4 et al., are referred to as “IEEE 1284-compatible” devices. IEEE 1284-
compatible devices are not 1284 compliant, but they meet the minimum requirements for operation in
Compatibility Mode with any 1284-compliant device.

The popular parallel port implementations vary widely in the timing of the nStrobe, nAck, and Busy signals.
For instance, many existing hosts ignore the nAck signal entirely, relying on Busy to control the flow of
data to the peripheral. The IEEE 1284 protocol compatibility requirements are sufficient to ensure operation
of an IEEE 1284-compatible device with an IEEE 1284-compliant device, but not to ensure interoperation
of two IEEE 1284-compatible devices. Conversely, the IEEE 1284 protocol compliance requirements
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ensure operation of IEEE 1284-compliant devices with both IEEE 1284-compliant and IEEE 1284-
compatible devices.

Historically, the published specifications of the popular variants of the “Centronics-compatible” interface
(see Annex C) specified a single “logic high” and a single “logic low” level for devices on both ends of the
interface, leaving no operational margin for noise or losses in the connecting cable. In practical
applications, the actual operating characteristics often exceeded these minimum requirements.

4.4 Device compliance criteria
This standard defines two levels of device compliance.

a) A IEEE 1284-I compliant device shall have a mechanical interface using IEEE 1284-A and IEEE
1284-B connectors, have a Level 1 electrical interface, and abide with the protocol compliance
criteria, all of which are listed below.

b) A IEEE 1284-II compliant device shall have a mechanical interface using IEEE 1284-C connectors,
have a Level 2 electrical interface, and abide with the protocol compliance criteria, all of which are
listed below.

4.4.1 Mechanical

IEEE 1284 devices shall use IEEE 1284-A, IEEE 1284-B, or IEEE 1284-C connectors in one of the config-
urations depicted in clause 8. The IEEE 1284-C connectors are recommended for all new designs.

4.4.2 Electrical

Level 1 electrical requirements provide sufficient margin to assure operation with any compatible or Level 1
compliant device. See 8.3.2 for a complete list of requirements.

Level 2 requirements ensure that all IEEE 1284 Level 2 compliant devices will interoperate with any IEEE
1284 Level 2 compliant device and in general with IEEE 1284 Level 1 compliant devices. See 8.3.3 for a
complete list of requirements.

It is recommended that all new designs implement Level 2 drivers and receivers.

4.4.3 Protocol

Compliant devices shall implement Compatibility and Nibble Modes as defined within this standard, as well
as the negotiation phases necessary to transition between these two modes. Implementation of Byte, ECP,
and/or EPP Modes (also defined within this standard) is recommended but not required for IEEE 1284
compliance.

Peripherals may, but are not required to, implement the Device ID string as specified in 7.6. Peripherals that
implement the Device ID string shall be able to return the ID string to the host in the Nibble Mode. It is rec-
ommended that peripherals be able to return the ID string to the host using any of the reverse channel
modes implemented by the device with the exception of EPP.

4.5 Cable compliance criteria
Interconnection cables intended for use with IEEE 1284 devices shall meet the mechanical and electrical
requirements of clause 8. Cable assemblies that meet these requirements shall be clearly and permanently
labeled “IEEE Std 1284-1994 compliant” to distinguish them from cables having the same type connectors
but different electrical characteristics.

5 Interface signals
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NOTE—IEEE Std 1284-1994 mode signal names are shown with their Compatibility Mode names in parentheses.
Usage of mode-specific signal names imply the interface is operating in that mode.

5.1 HostClk/nWrite (nStrobe): host driven
Compatibility Mode: Set active low to transfer data into the input latch of the peripheral. Data is valid while
nStrobe is low.

negotiation phase: Set active low to transfer the extensibility request value into the input latch of the periph-
eral. Data is valid on the leading (falling) edge of HostClk.

reverse data transfer phase: Nibble Mode: Set high during transfers to avoid latching data into the periph-
eral. Byte Mode: Pulsed low during transfers to acknowledge transfer of data from the peripheral. The
peripheral shall ensure that this pulse does not transfer a new data byte into the input latch of the peripheral.

ECP Mode: Used in a closed-loop handshake with PeriphAck(Busy) to transfer data or address information
from the host to the peripheral.

EPP Mode: Set low to denote an address or data write operation to the peripheral. Set high to denote an
address or data read operation from the peripheral.

5.2 AD1...AD8 (Data1...Data8):
Driven by the host in Compatibility Mode and the negotiation phase, not used in Nibble Mode, and bidirec-
tional in all other modes.

All modes: Data 1 is the least significant bit (bit 0).
Data 8 is the most significant bit (bit 7).

Compatibility Mode: Forward channel data.

negotiation phase: Extensibility request value.

reverse data transfer phase: Nibble Mode: Not used (host may still drive bus). Byte Mode: Reverse channel
data.

ECP Mode: Host-to-peripheral or peripheral-to-host address or data.

EPP Mode: Host-to-peripheral or peripheral-to-host address or data.

5.3 PtrClk/PeriphClk/Intr (nAck): peripheral driven
Compatibility Mode: Pulsed low by the peripheral to acknowledge transfer of a data byte from the host.

negotiation phase: Set low to acknowledge IEEE 1284 support, then set high to indicate that the
Xflag(Select) and data available flags may be read.

reverse data transfer phase: Nibble and Byte Modes: Used to qualify data being sent to the host.

reverse idle phase: Set low, then high by the peripheral to cause an interrupt indicating to the host that data
is available.

ECP Mode: Used in a closed-loop handshake with HostAck(nAutoFd) to transfer data from the peripheral
to the host.

EPP Mode: Used by the peripheral to interrupt the host. This signal is active high and positive edge
triggered.

5.4 PtrBusy/PeriphAck/nWait (busy): peripheral driven
Compatibility Mode: Driven high to indicate that the peripheral is not ready to receive data.

negotiation phase: Reflects the present state of the forward channel of the peripheral.
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reverse data transfer phase: Nibble Mode: Data bit 3 then 7, then forward channel busy status. Byte Mode:
forward channel busy status.

reverse idle phase: Forward channel busy status.

ECP Mode: The peripheral uses this signal for flow control in the forward direction. PeriphAck also pro-
vides a ninth data bit that is used to determine whether command or data information is present on the data
signals in the reverse direction.

EPP Mode: This signal should be driven inactive as a positive acknowledgment from the peripheral that
transfer of data or address is completed. The signal is active low. It should be driven active as an indication
that the device is ready for the next address or data transfer.

5.5 AckDataReq/nAckReverse (PError): peripheral driven
Compatibility Mode: Driven high to indicate that the peripheral has encountered an error in its paper path.
The meaning of this signal varies from peripheral to peripheral. Peripherals shall set nFault low whenever
they set PError high.

negotiation phase: Set high to indicate IEEE 1284 support, then follows nDataAvail(nFault).

reverse data transfer phase: Nibble Mode: Data bit 2 then 6. Byte Mode: Same as nDataAvail(nFault).

reverse idle phase: Set high until the host requests a data transfer, then follows nDataAvail(nFault).

ECP Mode: The peripheral drives this signal low to acknowledge nReverseRequest. The host relies upon
nAckReverse to determine when it is permitted to drive the data signals.

EPP Mode: (User Defined 1) This signal is manufacturer specific and beyond the scope of this standard.

5.6 Xflag (Select): peripheral driven
Compatibility Mode: Set high to indicate that the peripheral is on-line.

negotiation phase: The name Xflag refers to extensibility flag. It is used by the peripheral to reply to the
requested extensibility byte sent by the host during the negotiation phase. The signal level used to indicate
an affirmative response for each respective extensibility byte is shown in table 4.

reverse data transfer phase: Nibble Mode: Data bit 1 then 5. Byte Mode: Same as negotiation phase.

reverse idle phase: Same as negotiation phase.

ECP Mode: Same as negotiation phase.

EPP Mode: (User Defined 3) This signal is manufacturer specific and beyond the scope of this standard.

5.7 HostBusy/HostAck/nDStrb (nAutoFd): host driven
Compatibility Mode: The interpretation of this signal varies from peripheral to peripheral. Set low by host
to put some printers into auto-line feed mode. May also be used as a ninth data, parity, or command/data
control bit.

negotiation phase: Set low in conjunction with IEEE 1284 Active(nSelectIn) being set high to request a
IEEE 1284 mode. Then set high after the peripheral sets PtrClk(nAck) low.

reverse data transfer phase: Nibble Mode: Set low to indicate that the host can receive peripheral-to-host
data, then set high to acknowledge receipt of that nibble. Byte Mode: Same as Nibble Mode to request and
acknowledge bytes. Following a reverse channel transfer, the interface transitions to idle phase when Host-
Busy(nAutoFd) is set low and the peripheral has no data available.

reverse idle phase: Set high in response to a PtrClk(nAck) low pulse to re-enter reverse data transfer phase.
If set high with IEEE 1284 Active(nSelectIn) set low, the IEEE 1284 idle phase is aborted, and the interface
returns to Compatibility Mode.
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ECP Mode: The host drives this signal for flow control in the reverse direction. It is used in an interlocked
handshake with PeriphClk(nAck). HostAck also provides a ninth data bit that is used to determine whether
command or data information is present on the data signals in the forward direction.

EPP Mode: This signal is active low. It is used to denote a data cycle.

5.8 Peripheral Logic High: peripheral driven
Set high to indicate (subject to the provisions of 8.3.5) that all other signals sourced by the peripheral are in
a valid state. Set low to indicate that the peripheral power is off or that peripheral-driven interface signals
are otherwise in an invalid state.

Peripheral manufacturers may, but are not required to, use this signal to provide +5 V of power to an
attached device. In any case, the peripheral shall limit the short-circuit current to a maximum of 1.0 A and
shall provide circuitry to ensure a valid logic low level (as defined in 8.3.5) on this signal when the periph-
eral power is off.

5.9 nReverseRequest (nInit): host driven
Compatibility Mode: Pulsed low in conjunction with IEEE 1284 Active low to reset the interface and force
a return to Compatibility Mode idle phase.

negotiation phase: Set high.

reverse data transfer phase: Set high.

ECP Mode: This signal is driven low to place the channel in the reverse direction. While in the ECP Mode,
the peripheral is only allowed to drive the bidirectional data signals when nReverseRequest is low and IEEE
1284 Active is high.

EPP Mode: This signal is active low. When driven active (low), this signal initiates a termination cycle that
results in the interface returning to Compatibility Mode.

5.10 nDataAvail/nPeriphRequest (nFault): peripheral driven
Compatibility Mode: Set low by the peripheral to indicate that an error has occurred. The meaning of this
signal varies from peripheral to peripheral.

negotiation phase: Set high to acknowledge IEEE 1284 compatibility. In Nibble or Byte Mode, it is then set
low to indicate peripheral-to-host data is available following the host setting HostBusy(nAutoFd) high.

reverse data transfer phase: Nibble Mode: Set low to indicate that the peripheral has the data ready to send
to the host. Then used to send data bit 0 then 4. Byte Mode: Used to indicate that data is available.

reverse idle phase: Used to indicate that data is available.

ECP Mode: During ECP Mode, the peripheral shall drive this pin low to request communications with the
host.  This signal provides a mechanism for peer-to-peer communication. This signal would be typically
used to generate an interrupt to the host. This signal is valid in the forward and reverse directions.

EPP Mode: (User Defined 2) This signal is manufacturer specific and beyond the scope of this standard.

5.11 1284 Active/nAStrb (nSelectIn): host driven
Compatibility Mode: Set low by host to select peripheral.

negotiation phase: Set high in conjunction with Host Busy set low to request a IEEE 1284 mode.

reverse data transfer phase: Set high to indicate that the bus direction is peripheral to host. Set low to
terminate IEEE 1284 mode and to set bus direction to host to peripheral.

reverse idle phase: Same as reverse data transfer phase.
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ECP Mode: Driven high by the host while in ECP Mode. Set low by the host to terminate ECP Mode and
return the link to the Compatibility Mode.

EPP Mode: This signal is used to denote an address cycle. It is active low.

5.12 Host Logic High: host driven
Set high to indicate (subject to the provisions of 8.3.5) that all other signals sourced by the host are in a
valid state. Set low to indicate the host power is off or host-driven interface signals are otherwise in an
invalid state.

Host manufacturers may, but are not required to, use this signal to provide +5 V of power to an attached
device. In any case, the host shall limit the short-circuit current to a maximum of 1.0 A and shall provide
circuitry to ensure a valid logic low level (as defined in 8.3.5) on this signal when the host power is off.
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6 Interface concepts

6.1 Link level and data level separation
The concepts of physical, link, and data levels originate from the open systems interconnect (OSI) model
developed under the auspices of the International Organization for Standardization (ISO) and promulgated
as ISO 7498: 1984 [B3]. The IEEE 1284 interface separates the operation of the link between the host and
peripheral from the data communicated over that link. This allows link layer functions, such as IEEE 1284
communication mode negotiation, to be localized in an interface driver that transports application data with-
out having to interpret the data stream. See figure 1.

Figure 1 -- Separation of data level and link level
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Ideally, the application and the peripheral personality should have an open dialogue that allows them to
exchange information as needed. The IEEE 1284 interface provides a means by which this dialogue may be
achieved. There are differences in the way the application and the personality communicate, depending on
the device hardware and on the direction information is flowing. The interface drivers in the host and the
peripheral deal with the details of selecting an appropriate communications mode or modes, hiding the
interface dependencies from the application and peripheral personalities.

6.2 IEEE 1284 communication options
The IEEE 1284 negotiation phase allows the host and peripheral to select a mutually supported communica-
tion mode. During the negotiation phase, the host indicates which communication mode and options it
would like to use via the Extensibility Request Value (see table 4). There is one bit in the Extensibility
Request Value for each IEEE 1284 mode, plus additional bits for communications options such as device
identification (see 7.6) and ECP Mode Run Length Encoding (RLE).2 The peripheral indicates that it sup-
ports all requested options by setting the Extensibility Flag low (for Nibble Mode without options) or high
(for any other IEEE 1284 mode or options) as shown in table 4. If the peripheral does not support the
requested mode or options, it sets the Extensibility Flag low,3 and the interface returns to Compatibility
Mode.

6.3 Nibble Mode/Byte Mode transfer
Many personal computers do not have the hardware necessary to receive data over the eight data lines. Nib-
ble Mode allows peripheral-to-host data to be transferred over the parallel port status lines 4 b at a time.
Byte Mode allows the peripheral to send data to the host on the eight data lines. The host indicates its
Nibble Mode/Byte Mode capability during the negotiation phase. It is required that all IEEE 1284 devices
support Nibble Mode to guarantee that any two IEEE 1284 devices can communicate.

6.4 Host-initiated transfers
The host initiates all transfers in the Compatibility, Nibble, Byte, and EPP Modes and host-to-peripheral
transfers in the ECP Mode. Arbitration between ECP forward and reverse phases is controlled by the host.

6.5 Peripheral-initiated transfers
The peripheral initiates peripheral-to-host data transfers in the Nibble and Byte Modes by pulsing the Ptr-
Clk(nAck) line. The peripheral is only permitted to initiate a reverse channel transfer during the reverse idle
phase in order to prevent non-IEEE 1284 hosts from interpreting the PtrClk(nAck) pulse as a request for
more data from the host.

The peripheral requests use of the data bus in ECP Mode by asserting the nPeriphRequest (nFault) signal.
After the host grants the request, the peripheral initiates data transfers in ECP Mode reverse phase.

The host initiates all transfers in EPP Mode.

                                                     
2The host shall only request one communication mode option at a time, i.e., Byte, ECP, etc. The Device ID may be requested using
Nibble, Byte, or ECP Modes. RLE may be requested when using the ECP Mode.
3This sequence of operations was chosen so that compliant peripherals (which support Nibble Mode, but no other IEEE 1284 modes
or options) can set the Extensibility Flag low without having to examine the Extensibility Request Value.
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6.6 Multiple byte transfers
The IEEE 1284 interface allows multiple bytes to be transferred from the peripheral to the host without hav-
ing to renegotiate to an IEEE 1284 mode. For the Nibble and Byte Modes, the nDataAvail(nFault) signal
indicates whether there is a subsequent byte ready to transfer. In the ECP Mode, the peripheral may transfer
as many bytes as needed to the host, provided that the host does not issue a request to return the channel to
the forward direction.

6.7 Interface errors
Errors can result from timeouts, invalid states, and invalid transitions between states. These errors can be
detected by either the host computer or the peripheral. When either the host or peripheral detects an error, it
shall terminate the current transfer.

When the host or peripheral detects an error, it should immediately abort (with no termination phase) and
resume Compatibility Mode operation.

In particular, to protect against bus fight conditions on the bidirectional data signals, the peripheral shall
stop driving the data bus within 1 µs in the event of a protocol exception. The peripheral should carefully
monitor both IEEE 1284 Active (nSelectIn) and nReverseRequest (nInit) to detect when the host has
aborted to Compatibility Mode.

NOTE: Immediate termination upon error conditions is not supported in EPP Mode.

6.8 Peripheral error resolution
Some peripherals are subject to errors or exception conditions that require operator intervention before they
can accept any more data from the host (for example, a printer might run out of paper). Peripherals may also
be subject to internal processing delays of indefinite length. The IEEE 1284 interface allows the host to
request an IEEE 1284 mode reverse transfer in order to resolve whatever problem exists on the peripheral.
If an error message has been generated by the peripheral, the host may retrieve it and report the condition to
the application and/or user.

6.9 ECP Mode command/data
ECP Mode supports two advanced features to improve the effectiveness of the protocol for some applica-
tions. The features are implemented by allowing the transfer of 8-b data or 8-b commands.

When in the forward direction, data is transferred when HostAck is high, and an 8-b command is transferred
when HostAck is low. The most significant bit of the command indicates whether it is a run-length count
(for compression) or a channel address.

Table 1 -- Forward channel commands (when HostAck is low)

Bit 7 Bits 6..0
0 Run-length count (0127)

(mode 0011 0X00 only)
1 Channel address (0127)

When in the reverse direction, data is transferred when PeriphAck is high, and an 8-b command is trans-
ferred when PeriphAck is low.

Table 2 -- Reverse channel commands (when PeriphAck is low)

Bit 7 Bits 6..0
0 Run-length count (0127)
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(mode 0011 0X00 only)
1 Channel address (0127)

Devices indicate that they support decompression via the negotiation sequence. Devices that negotiate into
ECP RLE mode (data 0011 0X00) shall support decompression of RLE data and may optionally compress
it. Devices using the non-RLE ECP Mode shall not transfer ECP Mode RLE compressed data.

6.9.1 ECP Mode data compression

Single-byte run-length-encoding is supported, which compresses strings of identical bytes. The compression
is particularly useful on raster imaging devices. This simple compression does not preclude the use of other
data compression schemes at a higher (data stream or packet) level.

When a run-length count is received, the subsequent data byte is replicated the specified number of times. A
run-length count of zero specifies that only 1 B of data is represented by the next data byte, whereas a run-
length count of 127 indicates that the next byte should be expanded to 128 B. To prevent data expansion,
however, run-length counts of zero should be avoided.

6.9.2 ECP Mode channel addressing

A channel addressing scheme is used in ECP Mode, providing 128 forward and reverse channel addresses.
The channel addresses may be dynamically changed while in ECP Mode. Channel address definitions are
device specific. The host and peripheral channel addresses default to zero after each negotiation from Com-
patibility Mode into ECP Mode. After a channel address command is issued from the host, that address
becomes the current channel address for both host-to-peripheral and peripheral-to-host communications
until another channel address command is issued or until termination.

The channel addressing capability is based on a master-slave relationship with the host being the master.
The host can either use the current channel address or choose a new current channel address. In either case,
the host sends data intended for the current forward channel address.

If the peripheral has requested attention and wishes to return data on the current channel address (current
means the same as the last host-selected channel address), then the peripheral may send the data intended
for the current channel address without first selecting a reverse channel address.

However, if the peripheral has requested attention and wishes to return data on an address different from the
current channel address, then the peripheral shall first select the appropriate reverse channel address before
sending the data. If the reverse channel address has been changed and the peripheral wishes to return data
intended for the current channel address (the last host-selected address), then the peripheral shall first select
the current channel address prior to sending data.

A channel address command issued from the peripheral only affects the peripheral-to-host communication
channel. (The address used for host-to-peripheral communication remains unchanged.) That address
remains in effect indefinitely for peripheral-to-host communications until another channel address command
is issued from either the host or the peripheral or until termination.

6.10 EPP Mode addressing
EPP Mode incorporates a signaling technique that is microprocessor bus oriented. In the case of the typical
bus system that has a time-multiplexed address/data bus, all cycles are initiated by the host processor. First,
an address is generated on the bus and is latched by external circuitry when the processor generates an
address strobe. A separate strobe is generated to perform the actual data transfer. Cycles are terminated
when the addressed device signals “ready” back to the processor.

EPP Mode provides an interface that is functionally equivalent to such a system. All cycles are initiated by
the host with a means of generating address and data strobes. Also analogous to a microprocessor bus,
cycles are terminated and cycles can be extended by the device.
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6.11 Device identification
Prior to the first peripheral-to-host transfer, the host does not know the type of device to which it is
attached, or how to communicate with it. The device identification option allows the host to request ID
information from the peripheral using one of the IEEE 1284 reverse data transfer modes (Nibble, Byte, or
ECP). The peripheral identifies itself by sending a sequence of bytes to the host indicating its device type,
device family, and language capabilities. Refer to 7.6 for details of the Device ID response format.

Nibble Mode: All IEEE 1284-compliant devices are required to support Nibble Mode, and all 1284-compli-
ant devices that support Device ID are required to support Device ID in Nibble Mode. This ensures that
host devices will be able to read the Device ID of the peripheral, if present, without extended IEEE 1284
mode negotiation.

ECP Mode: Channel addressing is not used during Device ID. RLE data compression may be used during
Device ID, if requested by the host Extensibility Request Value and acknowledged by the peripheral Exten-
sibility Flag. Forward channel data is not sent during Device ID mode. To transfer data, the host shall first
terminate from the Device ID mode and renegotiate with the Device ID Request bit deasserted in the Exten-
sibility Request Value.
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7 Interface operation

The interface is always initialized to the Compatibility Mode, a conventional, unidirectional host-to-periph-
eral interface. From the Compatibility Mode the host may

a) Transmit data to the peripheral using the Compatibility Mode, or
b) Direct the interface to a mode capable of transmitting data from the peripheral to the host.

Refer to Annex A for signal timing definitions and to Annex B for signal event definitions.

A peripheral-to-host data transfer is initiated by the host negotiating with the peripheral for a mutually sup-
ported communication mode. At the discretion of the host, the interface can be returned to the Compatibility
Mode at any time. Phase transition diagrams showing the interface as it moves between phases are shown in
figures 6, 12, and 16 for the Nibble and Byte, ECP, and EPP Modes respectively.

The remainder of this clause describes the negotiation, currently defined peripheral-to-host data transfer
protocols, and the return to Compatibility Mode procedures.

7.1 Power-On
Hosts and peripherals indicate their readiness to communicate by asserting Host Logic High and Peripheral
Logic High respectively. All hosts with IEEE 1284-C connectors shall provide Host Logic High. All periph-
erals with IEEE 1284-C connectors shall provide Peripheral Logic High. The interface becomes active 500
ms after both Host Logic High and Peripheral Logic High exceed +3.0 V, at which point all control, data,
and status signals are required to be valid (see 8.3.5). Since devices with IEEE 1284-A or IEEE 1284-B
connectors may or may not support Host Logic High or Peripheral Logic High, there is no reliable way to
initiate a transfer. If the other device is not present when a transfer begins, a timeout may occur or the
interface will hang.

7.2 Initialization
Hosts may reinitialize the interface at any time by asserting nInit low in conjunction with nSelectIn low. The
interface returns to the Compatibility Mode idle phase after initialization. Resetting the interface may also
reset the peripheral.

7.3 Compatibility Mode
The Compatibility Mode follows pre-existing industry conventions with eight parallel bits, (Data 1–Data 8)
qualified by a low-going pulse on HostClk(nStrobe). The peripheral responds by setting PtrBusy(Busy) high
to hold off the next byte until the current one has been removed from the input latch. When ready for the
next byte, the peripheral pulses PtrClk(nAck) low, then sets PtrBusy(Busy) low. Timing requirements on
peripheral Busy ensure that compliant peripherals will interoperate with existing hosts that monitor Busy
but not nAck.

Compatibility Mode timing values are specified in figure 2 and table 3.
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Figure 2 -- Compatibility Mode handshake

After receiving Busy low from the peripheral, hosts shall not set nStrobe low until Tready. The peripheral can
reactivate Busy asynchronously due to some condition other than the reception of a data byte. Due to this
race condition, the host may at that instant be asserting nStrobe low to send the next data byte. The periph-
eral has to be able to accept at least one byte from the host after entering a Busy state in this situation.

Hosts shall provide Tsetup from D1...D8 and nAutoFd stable to the falling edge of nStrobe.

Hosts shall pulse nStrobe low for Tstrobe.

Hosts shall provide Thold from the rising edge of nStrobe to any change in D1...D8 or nAutoFd.

Compliant peripherals shall set Busy high before setting either nFault low, PError high, or Select low. Busy
has to be held high until all these signals return to their normal state (nFault high, PError low, and Select
high).

Normally, every byte sent from the host to the peripheral is acknowledged by the peripheral pulsing nAck
low while the Busy line is held high. This may not be the case when a host negotiation causes the interface
to change from Compatibility Mode to another IEEE 1284 interface mode after the host asserts nStrobe low
but before the peripheral pulses nAck. In this event, when the interface is returned to Compatibility Mode
the host shall rely on the Busy signal to determine when the peripheral is ready for the next byte.
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Table 3 -- Compatibility Mode handshake timing values

Parameter Measured at Measured From Measured to Value
(minimum/
maximum)

Compliance

Tready Host output Busy ¤ VIL nStrobe ¤ VOH 0 min. Compatible hosts
Tsetup(host) Host output Data stable nStrobe ¤ VOH 750 ns min. Compatible hosts
Tsetup(peripheral) Peripheral input Data stable nStrobe ¤ VIH  500 ns max.* Compatible

peripherals
Tstrobe(host) Host output nStrobe ¤ VOL nStrobe  ¦ VOL 750 ns min., 500 µs

max.
Compatible hosts

Tstrobe(peripheral) Peripheral input nStrobe  ¤ VIL nStrobe  ¦ VIL 500 ns max. Compatible
peripherals

Thold(host) Host output nStrobe ¦ VOH Data or nAutoFd
change

750 ns min. Compatible hosts

Thold(peripheral) Peripheral input nStrobe ¦ VIL Data or nAutoFd
change

500 ns max. Compatible
peripherals

Tbusy Peripheral
output

nStrobe ¤ VIL Busy ¦ VOH 500 ns max. Compliant
peripherals

Treply Peripheral
output

Busy  ¦ VIH nAck ¤ VOH 0 min. Compatible
peripherals

Tack Peripheral
output

nAck  ¤ VOL nAck  ¦ VOL 500 ns min., 10 µs
max.

Compatible
peripherals

Tnbusy Peripheral
output

nAck ¦ VOH Busy ¤ VOH  0 min.✝ Compliant
peripherals

Tnext Host output nAck  ¦ VIL nStrobe ¤ VOH 0 min. Compliant hosts

NOTES

1 -- For more information on the history of Centronics Standard Parallel and PC-Compatible Parallel Interfaces, see
Annex C and in particular C.6.2 for Busy-to-Ack timing variations.

2 -- VILis the low-level voltage input
VOL is the low-level voltage output
VOH is the high-level voltage output
VIH is the high-level voltage input

*The maximum value stated for peripherals in this table are referenced to the peripheral. For example, the peripheral
cannot require more than 500 ns data setup time.

✝Recognize that complementary signal changes may have overlapping signal transitions. The zero minimum value
cannot be guaranteed.

7.4 Negotiation
The IEEE 1284 compliant host negotiates with the peripheral to determine whether or not the peripheral is
IEEE 1284 compliant. (Annex B defines the signal transition events noted in the following sections.) The
host verifies that the device is IEEE 1284 compliant when, at event 2 (see figure 3), the peripheral, as a
result of the host stimulus (event 1), sets its status lines to include PError and nFault both at logic high lev-
els. This will not happen on a non-IEEE 1284 compliant peripheral. If the peripheral does not indicate that
it is an IEEE 1284 compliant device (event 2 never happens), the host should remove the stimulus (event 1)
and conclude that the device is not IEEE 1284 compliant.

Upon verification that the peripheral is IEEE 1284 compliant, the host will request a communication mode
for the peripheral. The IEEE 1284 compliant device will acknowledge the communication mode request
based on its capabilities and execute or reject the request as appropriate.
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The IEEE 1284 interface protocol has been designed to allow the host to request that the peripheral use var-
ious communication modes. This is accomplished by the host placing an extensibility request value on the
data bus during the negotiation phase (event 0) (see figure 3). The value 00h requests peripheral-to-host
data exchange using Nibble Mode reverse channel transfers. Each bit in the Extensibility Request Value is
used to request a communication mode. Table 4 shows the current assignments of the bits.

Bit seven, the “extensibility link request” bit, is a special bit. It is used to add a second extensibility request
byte during the negotiation phase. This allows more extensions to be added to the interface in the future. A
multiple byte negotiation is shown in figure 4.

Table 4 -- IEEE 1284 Extensibility Request Values -- Bit assignments

Bit Definition Valid bit values (7654
3210)

Xflag affirmative
response

7 Request Extensibility Link 1000 0000 High
6 Request EPP Mode 0100 0000 High
5 Request ECP Mode with RLE 0011 0000 High
4 Request ECP Mode 0001 0000 High
3 Reserved 0000 1000 High
2 Request Device ID; return data using Nibble

Mode Reverse Channel Transfer
Byte Mode Reverse Channel Transfer
ECP Mode Transfer without RLE
ECP Mode Transfer with RLE

0000 0100
0000 0101
0001 0100
0011 0100

High
High
High
High

1 Reserved 0000 0010 High
0 Byte Mode Reverse Channel Transfer

0000 0001 High
None Nibble Mode Reverse Channel Transfer

0000 0000 Low

In table 4, the column labeled “XFlag Affirmative Response” denotes the level of the XFlag signal that the
host expects to see, as an indication of a positive response, when it provides the specified Extensibility
Request byte to the peripheral during the negotiation phase. All requests are honored by a positive response
with the exception of the Nibble Mode reverse channel transfer request. This allows a “dumb peripheral” to
support this specification using only the lowest peripheral-to-host transfer protocol and without having to
examine the data signals on every host negotiation. For example, if the “dumb peripheral” always provides a
low-level response to every host negotiation request, then when the host requests to use a Nibble Mode pro-
tocol, it will receive a positive response from the peripheral. The peripheral has already acknowledged that
it is IEEE 1284 compliant by its responses to the beginning sequence of the negotiation phase (event 2).

The default IEEE 1284 communication mode for all hosts and peripherals is Compatibility Mode. This
mode is maintained until the host has successfully verified that it is connected to a IEEE 1284 compliant
device. To begin the negotiation phase, the host places the Extensibility Request Value on the data bus
(event 0), then sets IEEE 1284 Active(nSelectIn) high and HostBusy(nAutoFd) low (event 1). (Figure 3
shows the negotiation events along with a reverse channel data transfer for the Nibble Mode. These negotia-
tion events through event 4 are the same regardless of the communication mode being requested.) The
peripheral responds by setting PtrClk(nAck) low, nDataAvail(nFault) high, Xflag(Select) high, and
AckDataReq(PError) high (event 2). The host then sets HostClk(nStrobe) low (event 3), strobing the
Extensibility Value into the input data latch of the peripheral. The host then sets HostClk(nStrobe) and
HostBusy(nAutoFd) high (event 4), acknowledging that it has recognized an IEEE 1284 compatible
peripheral. The peripheral then sets AckDataReq(PError) low, nDataAvail(nFault) low if peripheral-to-host
data is available, and Xflag(Select) to its appropriate value corresponding to the extensibility feature
requested (event 5). The peripheral then sets PtrClk(nAck) high (event 6), indicating that the other status
lines may be read. If peripheral-to-host data is available, the interface enters the host busy, data available



IEEE
Std 1284-1994

IEEE STANDARD SIGNALING METHOD FOR A BIDIRECTIONAL

22

phase. If not, the interface enters the host busy, data not available phase.   At event 5 and beyond, the state
is based on the mode selected.

Table 5 defines the timing values at the driver (the receiver has to make allowances for any cable effects)
associated with figures 3 through 23.

Table 5 -- IEEE 1284 mode handshake timing values

Time Minimum Maximum Description
TH 0 1.0 s Host response time
T× 0 Infinite Infinite response time
TL 0 35 ms Peripheral response time
TR 0 N/A Peripheral response time (ECP

Mode only)
TS 35 ms N/A Host recovery time

(ECP Mode only)
TP 0.5 µs N/A Minimum setup or pulse width
TD 0 Minimum data setup time

(ECP/EPP Modes only)
TES 0 125 ns Short response time (EPP Mode

only)
TEL 0 10 µs Long response time (EPP Mode

only)
TER 50µ s Infinite Termination/nInit pulse width

TR state can be ended by the host when its TS has expired and a recovery process is started. TS is a
minimum of 35 mS and a maximum of infinity.

These subclauses are accompanied by full-page diagrams showing the handshake sequences. Along the bot-
tom of each diagram are numbers corresponding to signal transition events. Each of these events is listed in
annex A for reference. The event numbers are also shown in parentheses in the following subclauses to
improve readability of the diagrams.

Note that these diagrams are examples of correct operation (“typical” or “nominal”) and are not necessarily
requirements.

Valid termination states (see 7.7) are indicated in the diagrams by IEEE 1284 Active(nSelectIn) shown as a
heavy line.
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Figure 3 -- Nibble Mode negotiation and transfer
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Figure 4 -- Negotiation with extensibility link
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7.4.1 Successful negotiation

There are several possible outcomes of the negotiation sequence, depending on the mode requested, the
response of the peripheral, and subsequent host action.

If Nibble or Byte Mode was requested and

a) The peripheral responds correctly and peripheral-to-host data is available, the host may

1) Proceed with a reverse channel data transfer using the mode requested by the host,
2) Remain in the host busy, data available phase, or
3) Terminate and return to Compatibility Mode.

b) The peripheral responds correctly, but no peripheral-to-host data is available, the host may

1) Set HostBusy(nAutoFd) low, which puts the interface into the idle phase, or
2) Terminate and return to Compatibility Mode.

If ECP Mode was requested and the peripheral responds correctly, the link, following a setup phase, will
enter the ECP forward idle phase. From this state

_ The host can request to send data to the peripheral,
_ The peripheral can request to send data to the host, or
_ The host can terminate the ECP Mode and return to Compatibility Mode.

If EPP Mode was requested and the peripheral responds correctly, the link will enter the EPP Mode idle
phase. From this phase

_ The host can write data to the peripheral
_ The host can read data from the peripheral
_ The host can write an address value to the peripheral
_ The host can read an address value from the peripheral
_ The host can terminate EPP Mode and return to Compatibility Mode

NOTE—After successfully negotiating to the EPP Mode, low-to-high transitions of Intr(nAck) shall not be treated by
the host interface as an EPP interrupt request until after the first EPP cycle. In other words, Intr(nAck) is not
recognized as an EPP interrupt until after the first EPP cycle is complete.

When requesting the peripheral to provide Device ID information, the extensibility byte includes a mode to
be used for the peripheral-to-host transfer. Assuming that the peripheral responds correctly, the peripheral
will execute the request and transfer the data. After the host has received the data for the Device ID (the
number of bytes is defined by the first two bytes received from the peripheral), the host is required to return
the link to the Compatibility Mode.

7.4.2 Unsuccessful negotiation

For a transfer mode request, if the peripheral does not support the requested mode it will set Xflag(Select)
low if Byte, ECP, or EPP Mode was requested (event 5). [Responding with Xflag(Select) high for a request
for Nibble Mode is not allowed since all IEEE 1284 compliant devices shall support Nibble Mode.] When
this occurs, the host shall return the link to the Compatibility Mode and renegotiate for another transfer
mode. This sequence is shown in figure 5.

If the peripheral rejects the second byte of an extensibility link request, the host may attempt further extensi-
bility bytes. If all attempts fail, the host will remain in Compatibility Mode.

If illegal or contradictory transfer mode requests are made (such as both ECP and Byte Mode bits are set),
the peripheral shall reject the invalid combination by setting XFlag low.
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Figure 5 -- Failed negotiation and renegotiation



PARALLEL PERIPHERAL INTERFACE FOR PERSONAL COMPUTERS IEEE
Std 1284-1994

27

7.5 Peripheral-to-host transfer modes
At the current time, there are four modes defined as capable of providing peripheral-to-host data transfers.
They are the Nibble Mode, Byte Mode, ECP Mode, and EPP Mode. These modes are described and illus-
trated in the following subclauses.

7.5.1 Nibble Mode

The signals used for the Nibble Mode transfer are described in detail in clause 5. For convenience they are
summarized in the table below.

Nibble Mode
signal name

Compatibility
Mode signal

name

Nibble Mode signal description

PtrClk nAck Reverse data transfer phase: Used to qualify data being sent to the host.
Reverse idle phase: Set low then high by the peripheral to cause an inter-
rupt indicating to the host that data is available.

PtrBusy Busy Reverse data transfer phase: Data bit 3 then 7, then forward channel busy
status.

AckDataReq PError Reverse data transfer phase: Data bit 2 then 6.
Reverse idle phase: Set high until the host requests a data transfer, then
follows nDataAvail(nFault).

Xflag Select Reverse data transfer phase: Data bit 1 then 5.
HostBusy nAutoFd Reverse data transfer phase: Set low to indicate that host can receive

peripheral-to-host data, then set high to acknowledge receipt of that nibble.
Following a reverse channel transfer, the interface transitions to idle phase
when HostBusy(nAutoFd) is set low and the peripheral has no data
available.
Reverse idle phase: Set high in response to PtrClk(nAck) low pulse to re-
enter reverse data transfer phase. If set high with IEEE 1284
Active(nSelectIn) set low, the IEEE 1284 idle phase is aborted, and the
interface returns to Compatibility Mode.

nDataAvail nFault Reverse data transfer phase: Set low to indicate that the peripheral has the
data ready to send to the host. Then used to send data bit 0 (LSB) then 4.
Reverse idle phase: Used to indicate that data is available.

 After negotiating to the Nibble Mode, the host will set HostBusy(nAutoFd) low (event 7) to indicate that it
can accept data from the peripheral (see figure 3). The peripheral responds by placing the low-order nibble
of the byte on the four reverse channel data lines (event 8), then setting PtrClk(nAck) low (event 9). The
host then latches the nibble and sets HostBusy(nAutoFd) high (event 10), signaling to the peripheral that it
has received the nibble. The peripheral then sets PtrClk(nAck) high (event 11), completing the first nibble
handshake. This sequence is repeated for the high-order nibble, with one exception. After the host has
acknowledged the second nibble by setting HostBusy(nAutoFd) high (event 10), the peripheral sets the four
status lines as follows (event 13): PtrBusy(Busy) to its current forward channel value; nDataAvail(nFault)
low if another byte is ready to be sent; AckDataReq(PError) to the same value as nDataAvail(nFault); and
Xflag(Select) to its value during the last negotiation. The peripheral then sets PtrClk(nAck) high (event 11).
The host examines the status lines to determine if another byte is available and if the forward channel can
receive data.  Figure 3 shows negotiation and subsequent transfer of data that proceeds as follows.

At the end of a byte transfer (two nibbles) the peripheral reports whether it has more data for the host. If
there is no more data, the host has three options:

a) The host may terminate and return to Compatibility Mode,
b) The host may stay in the host busy, data not available phase, or
c) The host may set HostBusy(nAutoFd) low (event 7), putting the interface into the idle phase. This

transition is shown in figure 3 for Nibble Mode.

If there is additional data, the host has three options:
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_ The host may set HostBusy(nAutoFd) low, indicating that the host can accept additional data,
_ The host may stay in the host busy, data available phase, or
_ The host may terminate and return to Compatibility Mode.

Whenever the peripheral generates data for the host, it may request a reverse channel data transfer if the
interface is in the reverse idle phase. This is accomplished by setting nDataAvail(nFault) and PtrClk(nAck)
low (event 18), then setting PtrClk(nAck) high (event 19). This generates an interrupt inside the host,
assuming the parallel port interrupt is enabled. The host responds to the interrupt by setting
HostBusy(nAutoFd) high (event 20). The peripheral then sets AckDataReq(PError) low (event 21) to
acknowledge the response of the host. At this point the interface is in the host busy, data available phase
and may be followed by a reverse channel transfer. This sequence is shown in figure 8 for Nibble Mode
operation.

7.5.2 Byte mode

The signals used for the Byte Mode transfer are described in detail in clause 5. For convenience they are
summarized in the table below.

Byte Mode
signal name

Compatibility
Mode signal

name

Byte Mode signal description

HostClk nStrobe Will be pulsed low during Byte Mode transfers. The peripheral shall
ensure that HostClk(nStrobe) does not cause data to be latched when
this happens.

Data1...Data8 Data1...Data8 Reverse channel data.
PtrClk nAck Reverse data transfer phase: Used to qualify data being sent to the host.

Reverse idle phase: Set low then high by the peripheral to cause an
interrupt indicating to the host that data is available.

PtrBusy Busy Forward channel busy status.
AckDataReq PError Reverse data transfer phase: Follows nDataAvail(nFault).

Reverse idle phase: Set high until the host requests a data transfer, then
follows nDataAvail(nFault).

HostBusy nAutoFd Reverse data transfer phase: Set low to indicate that the host can
receive peripheral-to-host data, then set high to acknowledge receipt of
that byte. Following a reverse channel transfer, the interface transitions
to idle phase when HostBusy(nAutoFd) is set low and the peripheral
has no data available.
Reverse idle phase: Set high in response to PtrClk(nAck) low pulse to
re-enter reverse data transfer phase. If set high with IEEE 1284
Active(nSelectIn) set low, the IEEE 1284 idle phase is aborted, and the
interface returns to Compatibility Mode.

nDataAvail nFault Set low to indicate that the peripheral has data to send to the host.
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Figure 6 -- Nibble and Byte Mode phase transitions
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Figure 7 -- Nibble Mode negotiation and termination
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Figure 8 -- Nibble Mode idle phase to data transfer
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After negotiating to the Byte Mode, the host will place the data bus in a high impedance state (event 14),
then set HostBusy(nAutoFd) low (event 7) to indicate that it can accept data from the peripheral. The
peripheral responds by placing the reverse channel byte on the data bus (event 15) as shown in figure 11.
The peripheral then sets PtrClk(nAck) low (event 9). The host then sets HostBusy(nAutoFd) high (event
10), acknowledging that it has seen PtrClk(nAck) and indicating to the peripheral that it is processing the
byte. The peripheral then updates the status lines (event 13) as follows: PtrBusy(Busy) to its current forward
channel value; nDataAvail(nFault) low if another byte is ready to be sent; AckDataReq(PError) to the same
value as nDataAvail(nFault); and Xflag(Select) to its value during the last negotiation. The peripheral then
sets PtrClk(nAck) high (event 11), completing the byte handshake. At this point, the host will pulse Host-
Clk(nStrobe) low (event 16) then high (event 17), signaling that it has received the byte. The peripheral
shall not interpret this pulse as a latch signal for forward channel data. Note that events 10 and 16 may
occur simultaneously, and events 7 and 17 may occur simultaneously.

One objective in designing the Byte Mode transfer was to support the PS/2 DMA mode and still maintain
efficient operation and similarity to Nibble Mode. The PS/2 generates a unique event 16 (i.e., it is not coin-
cident with event 10), followed by event 17. A transfer is considered successful at event 17. The Byte Mode
supports this as well as a more efficient style of handshaking that allows HostClk(nStrobe) to fall (event 16)
at or after HostBusy(nAutoFd) is raised (event 10), and to rise again (event 17) at or before Host-
Busy(nAutoFd) is lowered (event 7). Software-driven hosts can thereby reduce the number of port reads and
writes that shall be done during a transfer. The only restriction on events 16 and 17 is that they occur far
enough apart for the peripheral to detect a low value on HostClk(nStrobe) after it raises PtrClk(nAck)
(event 11). This can be guaranteed by observing a minimum pulse width or by setting HostClk(nStrobe) low
while raising HostBusy(nAutoFd) (events 10 and 16, simultaneously).

At the end of a byte transfer, the peripheral reports whether it has more data for the host. If there is no more
data, the host has three options:

a) The host may terminate and return to Compatibility Mode.
b) The host may stay in the host busy, data not available phase.
c) The host may set HostBusy(nAutoFd) low (event 7), putting the interface into the idle phase. This

transition is shown in figure 11 for Byte Mode.

If there is additional data, the host has three options:

a) The host may set HostBusy(nAutoFd) low, indicating that the host can accept additional data.
b) The host may stay in the host busy, data available phase.
c) The host may terminate and return to Compatibility Mode.

Whenever the peripheral generates data for the host, it may request a reverse channel data transfer if the
interface is in the idle phase. This is accomplished by setting nDataAvail(nFault) and PtrClk(nAck) low
(event 18), then setting PtrClk(nAck) high (event 19). This generates an interrupt inside the host, assuming
the parallel port interrupt is enabled. The host responds to the interrupt by setting HostBusy(nAutoFd) high
(event 20). The peripheral then sets AckDataReq(PError) low (event 21) to acknowledge the response of
the host. At this point, the interface is in the host busy, data available phase and may be followed by a
reverse channel transfer. This sequence is shown in figure 8 for Nibble Mode operation, which is the same
sequence used to interrupt the host for a Byte Mode transfer.
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Figure 9 -- Nibble Mode idle phase to data transfer to termination
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Figure 10 -- Byte Mode negotiation and termination
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Figure 11 -- Byte Mode negotiation and transfer
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Figure 12 -- ECP Mode phase transitions
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Figure 13  -- ECP Mode negotiation, setup, forward, and termination
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7.5.3 ECP Mode

The signals used for the ECP Mode transfer are described in detail in clause 5. For convenience they are
summarized in the table below.

ECP Mode signal
name

Compatibility
Mode signal

name

ECP Mode signal description

HostClk NStrobe Used in a closed-loop handshake with PeriphAck(Busy) to transfer data or
address information from the host to the peripheral.

Data1...Data8 Data1...Data8 Host-to-peripheral or peripheral-to-host address or data.
PeriphClk NAck Used in a closed-loop handshake with HostAck(nAutoFd) to transfer data

from the peripheral to the host.
PeriphAck Busy The peripheral uses this signal for flow control in the forward direction.

PeriphAck also provides a ninth data bit used to determine whether
command or data information is present on the data signals in the reverse
direction.  See section 6.9 and figure 13, events 42-46.  See section 6.9
and figure 13, events 34-32.

HostAck nAutoFd The host drives this signal for flow control in the reverse direction. It is
used in an interlocked handshake with PeriphClk(nAck). HostAck also
provides a ninth data bit that is used to determine whether command or
data information is present on the data signals in the forward direction.

NReverseRequest nInit This signal is driven low to place the channel in the reverse direction.
While in the ECP Mode, the peripheral is only allowed to drive the bidi-
rectional data signals when nReverseRequest is low and IEEE 1284
Active is high.

NPeriphRequest nFault During ECP Mode, the peripheral shall drive this pin low to request
communications with the host. This signal provides a mechanism for peer-
to-peer communication. This signal would be typically used to generate an
interrupt to the host. This signal is valid in the forward and reverse
directions.

nAckReverse PError The peripheral drives this signal low to acknowledge nReverseRequest.
The host relies upon nAckReverse to determine when it is permitted to
drive the data signals.

To begin the negotiation phase, the host places the ECP extensibility request value on the data bus (event
0), then sets IEEE 1284 Active (nSelectIn) high and HostAck (nAutoFd) low (event 1). The peripheral
responds by setting PeriphClk (nAck) low, nPeriphRequest (nFault) high, Xflag(Select) high, and
nAckReverse (PError) high (event 2). The host then sets HostClk (nStrobe) low (event 3). The host then
sets HostClk (nStrobe) and HostAck (nAutoFd) high (event 4), acknowledging that it has recognized an
ECP-compatible peripheral. The peripheral then sets nAckReverse (PError) low, PeriphAck (Busy) low,
and Xflag (Select) high if it supports ECP Mode (event 5). The peripheral then sets PeriphClk (nAck) high
(event 6), indicating that the other status lines may be read. The interface now enters the setup phase. Figure
13 demonstrates a successful negotiation.

If the peripheral does not support ECP Mode, it will set Xflag(Select) low during negotiation. When this
occurs, the host shall terminate the session and renegotiate for another transfer mode.

The setup phase is entered immediately following a successful negotiation. After seeing PeriphClk (nAck)
go high, the host sets HostAck (nAutoFd) low (event 30). The peripheral responds by setting nAckReverse
(PError) high (event 31). The interface now enters the forward idle phase. The setup phase transitions are
shown in figure 13.

While in the forward idle or forward data transfer phases, the peripheral may asynchronously assert the
nPeriphRequest (nFault) to request that the channel be reversed. When the peripheral is not busy, it sets
PeriphAck (Busy) low (event 32).

The host prepares for data transfer by placing data on the bus (event 34). The host sets HostClk (nStrobe)
low to indicate valid data on the bus (event 35). The peripheral then sets PeriphAck (Busy) high to
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acknowledge the handshake (event 36). The host then sets HostClk (nStrobe) high (event 37). The
peripheral then latches the data and sets PeriphAck (Busy) low, completing the transfer. This sequence is
shown in figure 13.

There is a possibility of the forward channel becoming stalled. The stall condition will exist if the peripheral
is unable to accept the data byte being transferred by the host at event 35. In this condition, the peripheral
will not acknowledge the handshake (event 36). A handshake, Host Transfer Recovery, has been defined to
recover from this condition. Host devices that are not concerned with utilizing the ECP Mode Host Transfer
Recovery handshake to break out of an interface stalled condition need not implement this handshake. How-
ever, any peripheral that can cause an ECP stall condition by stopping the interface at event 35 (an infinite
timeout), has to support the Host Transfer Recovery handshake in the ECP Mode.

The Host Transfer Recovery handshake is defined as follows:

If the host, following event 35, determines that a stall condition exists, the host may abort the transfer
of the current byte by setting nReverseRequest (nInit) low (event 72). The peripheral, regardless of
whether it has accepted the byte from the host (event 36 happened), shall discard the byte (if
applicable) and acknowledge the host by setting nAckReverse (PError) low. The host then returns
nReverseRequest (nInit) high (event 74), and the peripheral follows by returning nAckReverse
(PError) high (event 75). This sequence, shown in figure 15, will return the interface to the state that
existed prior to host event 35.

The data transfer timing is designed to provide three one-way cable delays for data setup if data is driven
simultaneously with HostClk (nStrobe).

The forward to reverse phase is entered from the forward idle phase. The host places the data bus in a high-
impedance state and sets HostAck (nAutoFd) low (event 38). After waiting for the minimum setup time, the
host then sets nReverseRequest (nInit) low (event 39). The peripheral then acknowledges the reversal by
setting nAckReverse (PError) low (event 40). The peripheral is now permitted to drive the data bus. The
interface now enters the reverse phase. This sequence is shown in figure 14.

The reverse idle or reverse data transfer phases may be entered only from the forward to reverse phase.
When the host is not busy, it sets HostAck (nAutoFd) low (event 46).

The peripheral prepares for data transfer by placing data on the bus (event 42). The peripheral then sets
PeriphClk (nAck) low to send the data (event 43). The host then sets HostAck (nAutoFd) high to acknowl-
edge the handshake (event 44). The peripheral then sets PeriphClk (nAck) high (event 45). The host is
expected to accept the data and sets HostAck (nAutoFd) low (event 46), completing the transfer. This
sequence is shown in figure 14.
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Figure 14 -- ECP Mode forward to reverse, reverse, and reverse to forward
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Figure 15 -- ECP Mode host transfer recovery
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Figure 16 -- EPP Mode phase transitions

The reverse to forward phase is entered from the reverse idle phase. HostAck (nAutoFd) may be high or
low when the reverse to forward phase is entered. The host sets nReverseRequest (nInit) high (event 47).
The peripheral then places the data bus in a high impedance state, sets PeriphAck (Busy) to indicate the
proper forward channel status, and sets PeriphClk (nAck) high (event 48). If the peripheral was in the
middle of a data transfer (PeriphClk low), it assumes that the data byte will be discarded by the host and
suspends the transfer. After waiting the minimum setup time, the peripheral then sets nAckReverse (PError)
high to acknowledge the change of direction (event 49). The host is now permitted to drive the data bus.
The interface now enters the forward phase. This sequence is shown in figure 14.

To terminate from IEEE 1284 mode, the host sets IEEE 1284 Active (nSelectIn) low and HostAck
(nAutoFd) high (event 22), which will initiate one of two types of termination. The first type is a handshake,
which allows the peripheral to tell the host when it has returned to compatible mode. The second is an
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immediate abort, with no guarantee of interface integrity. If the interface was in a “valid” state, which is any
state where a reverse data transfer is not in progress, the peripheral will perform the handshake. If the
interface was not in a “valid” state, the peripheral will abort immediately. Valid states are indicated in the
data transfer diagrams by IEEE 1284 Active (nSelectIn) shown as a heavy line.

To terminate from a valid state, the peripheral will respond to IEEE 1284 Active (nSelectIn) set low by set-
ting PeriphAck (Busy) and nPeriphRequest (nFault) high (event 23). The peripheral will then set Xflag
(Select) to its opposite sense and PeriphClk (nAck) low (event 24). The host then sets HostAck (nAutoFd)
low (event 25). The peripheral then sets the compatible mode peripheral status on nPeriphRequest (nFault),
Xflag (Select), and nAckReverse (PError) (event 26). The peripheral then sets PeriphClk (nAck) high
(event 27). The host ends the termination handshake by setting HostAck (nAutoFd) high (event 29), which
returns the interface to the Compatibility Mode idle phase. The peripheral may then change PeriphAck
(Busy) (event 30) to accept host-to-peripheral data. This sequence is shown following a data transfer in
figure 13.

When IEEE 1284 Active (nSelectIn) is set low in an invalid state, the peripheral aborts immediately. This is
to protect both the peripheral and the host. The unexpected transition of IEEE 1284 Active (nSelectIn) and
possibly other signals could be caused by a user switching a switch box at the wrong time or by a cable that
has worked loose. If a reverse channel data transfer is aborted, the current byte in transit is lost, but the
peripheral will hold that byte in its output register. The next time the host performs a reverse channel trans-
fer, that byte will be the first one sent.

7.5.4 EPP Mode

The signals used for the EPP Mode transfer are described in detail in clause 5. For convenience, they are
summarized in the table below.

EPP Mode signal
name

Compatibility
Mode signal
name

EPP Mode signal description

nWrite nStrobe Set low to denote an address or data write operation to the peripheral. Set
high to denote an address or data read operation from the peripheral.

AD1...AD8 Data1...Data8 Host-to-peripheral or peripheral-to-host address or data.
Intr nAck Used by the peripheral to interrupt the host. This signal is active high and

positive edge triggered.
nWait Busy This signal should be driven inactive as a positive acknowledgment from

the peripheral that transfer of data or address is completed. The signal is
active low. It should be driven active as an indication that the device is
ready for the next address or data transfer.

nDStrb nAutoFd This signal is active low. It is used to denote a data cycle.
nInit nInit This signal is active low. When driven active (low), this signal initiates a

termination cycle that results in the interface returning to Compatibil ity
Mode.

nAStrb nSelectIn This signal is used to denote an address cycle. It is active low.
User defined 1 PError This signal is manufacturer specific and beyond the scope of this standard.
User defined 2 nFault This signal is manufacturer specific and beyond the scope of this standard.
User defined 3 Select This signal is manufacturer specific and beyond the scope of this standard.

The fundamental EPP cycles are described in the following paragraphs. They are accompanied by figures
showing the handshaking sequences. Along the bottom of each figure are numbers corresponding to signal
transition events. Each of these events is listed in Annex B along with information regarding timing con-
straints relative to other transition events. The event numbers are also designated by parentheses in the fol-
lowing paragraphs.

Typically, EPP operates on a two-phase bus cycle. First, the host selects the register within a device for sub-
sequent operations. Second, the host performs a series of read and/or write byte operations to the selected
register. All operations on EPP devices are performed asynchronously.
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EPP provides a single interrupt request signal for the device. An EPP device can generate an interrupt
request to the host by asserting Intr. The EPP specification does not include an interrupt acknowledge cycle
or any means of masking the interrupt. These functions may be implemented at a higher layer in a device-
specific manner. The interrupt operation is independent of other cycles. Though the interrupt signal may be
asserted at any time, interrupts will not interfere with EPP cycles.

After negotiating into EPP Mode, the XFlag, AckDataReq, and nDataAvail signals may be used for user-
defined peripheral status bits.

Four operations are supported on EPP:

a) Address write
b) Data write
c) Address read
d) Data read

These operations are defined as follows.

To begin an address write cycle (figure 17), the host asserts nWrite, places the register address on the data
signals, and asserts nAStrb (event 56). The peripheral responds by de-asserting nWait (event 58) to indicate
that it is ready to receive the address byte. When the host recognizes nWait as inactive, it will de-assert
nAStrb (event 59) to latch the address byte into the device. The peripheral acknowledges the end of the
cycle and indicates that it is ready for the next cycle to begin by asserting nWait (event 60). The host can
then modify the address/data on the data signals and change the state of the nWrite signal.

To begin a data write cycle (figure 18), the host asserts nWrite, drives the data signals, and asserts nDStrb
(event 62). The peripheral responds by de-asserting nWait (event 58) to indicate that it is ready to receive
the data byte. When the host recognizes nWait as inactive, it will de-assert nDStrb (event 63) to latch the
data byte into the device. The peripheral acknowledges the end of the cycle and indicates that it is ready for
the next cycle to begin by asserting nWait (event 60). The host can then modify the address/data on the data
signals and change the state of the nWrite signal (event 61).

To begin an address read cycle (figure 19), the host de-asserts nWrite and places the data signals in a high
impedance state, then asserts nAStrb (event 64). The peripheral responds by driving the data signals with
the address byte (event 65) and then de-asserting nWait (event 58) to indicate that the address is valid.
When the host recognizes nWait as inactive, it will read the address from the data signals and de-assert
nAStrb (event 59). The peripheral places the data signals in a high impedance state (event 66), then
acknowledges the end of the cycle, and indicates that it is ready for the next cycle to begin by asserting
nWait (event 60). The host can then drive the data signals and change the state of the nWrite signal.

To begin a data read cycle (figure 20), the host de-asserts nWrite and places the data signals in a high
impedance state, then asserts nDStrb (event 67). The peripheral responds by driving the data signals (event
65) and de-asserting nWait (event 58) to indicate that the data is valid. When the host recognizes nWait as
inactive, it will read the data from the data signals and de-assert nDStrb (event 63). The peripheral places
the data signals in a high impedance state (event 66), acknowledges the end of the cycle, and indicates that
it is ready for the next cycle to begin by asserting nWait (event 60). The host can then drive the data signals
and change the state of the nWrite signal.
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Figure 17 -- EPP Mode negotiation, ddress write, and idle
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Figure 18 -- EPP Mode data write
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Figure 19 -- EPP Mode address read
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Figure 20 -- EPP Mode data read and termination
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Figure 21 -- EPP Mode peripheral interrupt
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7.6 Device ID
The Device ID is a length field followed by a case-sensitive string of ASCII characters defining peripheral
characteristics and/or capabilities. To instruct the peripheral to send this string to the host, the host (from
the Compatibility Mode) shall request a peripheral-to-host data transfer using the appropriate combination
of bits in the extensibility byte.

NOTE—x'00' denotes a hexadecimal value of zero; the x and single quotes are not part of the string.

The Device ID will be sent from the peripheral to the host using the mode requested with the extensibility
byte. The host is required to interpret the first two bytes of the peripheral-to-host message as a message
length field.

If the peripheral accepts the Device ID negotiation but indicates that data is not available at either the start
of the Device ID reverse transfer or at any time before the full count has been sent to the host, the host shall
either enter the reverse idle phase or enter the termination phase. If the host terminates the Device ID trans-
fer before all bytes have been transferred, the peripheral will discard the remainder of the Device ID string.
Therefore, each time the host requests Device ID, the complete string will be sent.

The Device ID is a sequence of bytes. The first two bytes are the length of the sequence, including the two
length bytes. The first byte is the most significant byte. (Length values of x’0000’, x’0001’, and x’0002’ are
reserved.) After receiving the sequence, the host is required to return the link to Compatibility Mode
regardless of whether the peripheral has additional data to send.

Following the two length bytes, the sequence is composed of a series of keys and values of the form:

key: value {,value};

repeated for each key. As indicated, each key will have one value, and may have more than one value. The
minimum necessary keys (case-sensitive) are MANUFACTURER, COMMAND SET, and MODEL. (These keys
may be abbreviated as MFG, CMD, and MDL respectively.) Each implementation will supply these three keys
and possibly additional ones as well. Each key (and each value) is a string of characters. Any characters
except colon (:), comma (,), and semi-colon (;) may be included as part of the key (or value) string. Any
leading or trailing white space (SPACE[x’20’], TAB[x’09’], VTAB[x’0B’], CR[x’0D’], NL[x’0A’], or
FF[x’0C’]) in the string is ignored by the parsing program (but is still counted as part of the overall length of
the sequence).

An example ID String, in a form similar to a assembler DB directive, showing optional COMMENT and
ACTIVE COMMAND SET keys and their associated values (the text is actually all on one line):

x’00’,x’79’,
MANUFACTURER:ACME Manufacturing;
COMMAND SET:PCL,MPL;
MODEL:LaserBeam ?;
COMMENT:Anything you like;
ACTIVE COMMAND SET:PCL;

While more expensive to store and transfer than a 1–4 B ID code, an ID string in this format does not
require administration by a central authority to assign codes for devices, manufacturers, etc.
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7.7 Termination
To terminate either the Nibble, Byte, or ECP IEEE 1284 Modes, the host sets IEEE 1284 Active(nSelectIn)
low and HostBusy (nAutoFd) high if not set already (event 22), which will initiate one of two types of
termination. The first type is a handshake, which allows the peripheral to tell the host when it has returned
to Compatibility Mode. The second is an immediate abort, with no guarantee of interface integrity. If the
interface was in a “valid” state, which is any state where a reverse data transfer is not in progress, the
peripheral will perform the handshake. If the interface was not in a “valid” state, the peripheral will abort
immediately. Valid states are indicated in the data transfer diagrams by IEEE 1284 Active(nSelectIn) shown
as a heavy line.

To terminate the EPP Mode of a IEEE 1284 device (figure 20), the host asserts the nInit signal (event 68).
The peripheral should be reset to its initial Compatibility Mode (event 69).

7.7.1 Valid state termination

To terminate from a valid state, the peripheral will respond to IEEE 1284 Active(nSelectIn) set low by set-
ting PtrBusy(Busy) and nDataAvail(nFault) high (event 23). The peripheral will then set Xflag(Select) to its
opposite sense and PtrClk(nAck) low (event 24). The host then sets HostBusy(nAutoFd) low (event 25).
The peripheral then sets the Compatibility Mode peripheral status on nDataAvail(nFault), Xflag(Select),
and AckDataReq(PError) (event 26). The peripheral then sets PtrClk(nAck) high (event 27). The hosts ends
the termination handshake by setting HostBusy(nAutoFd) high (event 28), which returns the interface to the
Compatibility Mode idle phase. The peripheral may then change PtrBusy(Busy) (event 29) to accept host-
to- peripheral data. This sequence is shown following a data transfer in figure 9, and from the reverse idle
phase in figure 22.

7.7.2 Immediate termination

When IEEE 1284 Active(nSelectIn) is set low in an invalid state, the peripheral aborts immediately. This is
to protect both the peripheral and the host. The unexpected transition of IEEE 1284 Active(nSelectIn) and
possibly other signals could be caused by a user switching a switch box at the wrong time or by a cable that
has worked loose. If a reverse channel data transfer is aborted, the current byte in transit is lost, but the
peripheral will hold that byte in its output register. The next time the host performs a reverse channel trans-
fer, that byte will be the first one sent.

NOTE—This immediate termination is not supported in EPP Mode, which has no provision for operation with conven-
tional switch boxes.

7.8 Collisions
When in the idle phase, the peripheral can report that peripheral-to-host data is available. It is possible that
this may occur at the same time that the host attempts to terminate from idle phase and return to Compatibil-
ity Mode.

The peripheral will begin the interrupt phase (events 18 and 19). If IEEE 1284 Active (nSelectIn) goes low
prior to HostBusy (nAutoFd) changing from a high to a low state (event 7; not shown), the peripheral
should recognize the host has entered the termination phase and should complete the normal termination
handshake (events 23 through 29). This handshake sequence is shown in figure 23.
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Figure 22 -- Nibble Mode idle phase to termination
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Figure 23 -- Nibble Mode termination collision
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8 Mechanical and electrical interface

8.1 General considerations
These physical interface specifications are provided to define the interconnection of parallel port devices.
Input and output interface signals are assumed to be industry standard 5 Vdc transistor-transistor logic
(TTL)-level compatible. Devices may be connected by a cable or directly connected (connector-to-
connector).

The broad objectives and assumptions underlying the recommendation contained throughout this clause are

a) To provide a low-cost means for communication between a host computer and peripheral
b) To ensure compatibility of independently developed mechanical and electrical interfaces
c) To provide ease of installation and service
d) To make use of existing cables and connectors
e) To provide compatibility with well-behaved and well-designed host and peripherals already in

service

8.2 Mechanical characteristics
Three interface connectors are defined. These three connectors are denoted IEEE 1284-A, IEEE 1284-B,
and IEEE 1284-C. The IEEE 1284-A and IEEE 1284-B connectors are equivalent to existing connectors on
compatible devices. The IEEE 1284-C connector is a new, higher density connector and is recommended
for new designs.

Intermateability is not supported directly between the existing connectors (IEEE 1284-A and IEEE 1284-B)
and the new connector (IEEE 1284-C). If required, interposer blocks or cables shall be constructed using
the connections shown in figures 27–31.

All specified connectors are available in a variety of orientations. No specific orientation is recommended.
Sufficient space shall be provided around the device connector to allow for the mating connector, connector
shell, and latch assembly.

8.2.1 Connectors
NOTE—The footnotes to figures 24–26 include several example part numbers from various manufacturers. These lists
are not all-inclusive nor are they meant to imply exclusive or recommended parts. Part numbers are current as of the
approval date of this standard.

The IEEE 1284-A connector (see figure 24) is the existing DB25 connector series commonly used for the
host side. This connector is available from a variety of manufacturers. The cable shall be retained using 4-
40 jack screws and stand-offs as shown in figure 24.
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Figure 24 -- Physical drawing of the IEEE 1284-A connector

The IEEE 1284-B connector (see figure 25) is the existing 36-pin 0.085 centerline connector series com-
monly used on the peripheral side. This connector is available from a variety of manufacturers. The cable
shall be retained using wire bails and latches as shown in figure 25.

NOTE—The following example part numbers are provided for the convenience of the reader.  They are neither
exclusive or recommended.  IEEE 1284-A:  PC Mount Receptacle - AMP 747846-4, 3M 8325-60XX & 89925-
X00X, Molex 82009 Series; Cable Plug - AMP 747948-1, 3M 8225-X0XX, Molex 71527 Series; Shielded Cover
Kit with Latches - AMP included with 747948-1, 3M 3357-9225 & 3357-6525, Molex 82002 Series.
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Figure 25 -- Physical drawing of the IEEE 1284-B connector

The IEEE 1284-C connector (see figure 26) is a new 36-pin 0.050 centerline connector recommended by
this standard. This connector is used for both host and peripheral sides of the interface. This connector is
available from a variety of manufacturers. The cable shall be retained using clip latches as shown in figure
26.

NOTE—The following example part numbers are provided for the convenience of the reader.  They are neither
exclusive or recommended.  IEEE 1284-B:  PC Mount Receptacle - AMP 555119-1, 3M 3367-300X & 3448-62,
Molex 71519 Series, Amphenol Series 57-40360; Cable Plug - AMP 554950-1, Molex 71522 Series; Shielded
Cover Kit with Latches - AMP 554945-1, Molex 71523 Series.
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Figure 26  -- Physical drawing of the IEEE 1284-C connector

 NOTE—The following example part numbers are provided for the convenience of the reader.  They are
neither exclusive or recommended.  IEEE 1284-C:  PC Mount Receptacle - AMP 2-175925-5, 2-176971-5
& 2-178238-5, 3M 10236-52A2VC, 10236-5202VC, N10236-52A2VC, N10236-5202VC, 10236-6202VC
& 10236-0200EC, Molex 52311-3611, 52311-3621, 52515-3611, 52679-3611, 52696-3611, 52698-3611,
52699-3621 & 52700-3611, Harting 60-11-036-5132 & 60-11-036-5140; Cable Plug - AMP 2-175677-5,
3M 10136-6000EC, Molex 52316-3611, Harting 60-13-036-5200; Shielded Cover Kit with Latches - AMP
176793-5, 3M 10336-A200-00, 10336-3210-00X & 10336-A500-00, Molex 52370-3600 & 52370-3610,
Harting 60-13-036-0153.

Devices intended to be interconnected by cables shall be constructed with the connector receptacles
attached to the devices. Interconnection cables for such devices shall be constructed with the connector
plugs at each end of the cable. Devices intended for direct attachment shall be constructed with the
connector plug attached to the device. Interconnection cables for such devices shall be constructed with a
connector receptacle at one end and a connector plug at the other end of the cable. In either case, the device
connector pin assignments shall conform to 8.2.2 and the cable wiring shall conform to 8.2.3.

Device connectors shall provide a 360° metal shell (see figures 24–26) to provide cable shield continuity
into the device on both ends.

8.2.2 Connector pin assignments

Pinout description of the IEEE 1284 connectors (IEEE 1284-A, IEEE 1284-B, and IEEE 1284-C) are
shown in tables 6, 7, and 8. These tables show the signal pin number, source, and signal name for each
signal. The sources are: H to designate sourced by the host, P to designate sourced by the peripheral, and
Bi-Di to designate a bidirectional signal (one that can be sourced by either the host or the peripheral). Signal
names are listed for each mode supported.



PARALLEL PERIPHERAL INTERFACE FOR PERSONAL COMPUTERS IEEE
Std 1284-1994

59

8.2.2.1 IEEE 1284-A
Table 6 shows the pin numbers and their assigned signal names for the IEEE 1284-A connector. The 1284-
A connector is a 25 pin subminiature D-shell connector. A physical description of the IEEE 1284-A
connector can be found in figure 24.

Table 6 -- IEEE 1284-A connector pin assignments

Pin # Source Compatible Nibble Byte ECP EPP
1 H nStrobe HostClk HostClk HostClk nWrite
2 Bi-Di* Data 1 (Least Significant Bit) AD1
3 Bi-Di* Data 2 AD2
4 Bi-Di* Data 3 AD3
5 Bi-Di* Data 4 AD4
6 Bi-Di* Data 5 AD5
7 Bi-Di* Data 6 AD6
8 Bi-Di* Data 7 AD7
9 Bi-Di* Data 8 (Most Significant Bit) AD8

10 P nAck PtrClk PtrClk PeriphClk Intr
11 P Busy PtrBusy PtrBusy PeriphAck nWait
12 P PError AckDataReq AckDataReq nAckReverse User defined 1
13 P Select Xflag Xflag Xflag User defined 3
14 H nAutoFd HostBusy HostBusy HostAck nDStrb
15 P nFault nDataAvail nDataAvail nPeriphRequest User defined 2
16 H nInit nInit nInit nReverseRequest nInit
17 H nSelectIn IEEE 1284

Active
IEEE 1284

Active
IEEE 1284 Active nAStrb

18 Signal Ground (nStrobe)
19 Signal Ground (Data 1 and Data 2)
20 Signal Ground (Data 3 and Data 4)
21 Signal Ground (Data 5 and Data 6)
22 Signal Ground (Data 7 and Data 8)
23 Signal Ground (Busy and nFault)
24 Signal Ground (PError, Select, and nAck)
25 Signal Ground (nAutoFd, nSelectIn, and nInit)

* Data signals can be read by some but not all host devices.
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8.2.2.2 IEEE 1284-B
Table 7 shows the pin numbers and their assigned signal names for the IEEE 1284-B connector. The 1284-
B connector is a 36-pin ribbon type connector. A physical description of the IEEE 1284-B connector can be
found in figure 25.

Table 7 -- IEEE 1284-B connector pin assignments

Pin # Source Compatible Nibble Byte ECP EPP
1 H nStrobe HostClk HostClk HostClk nWrite
2 Bi-Di* Data 1 (Least Significant Bit) AD1
3 Bi-Di* Data 2 AD2
4 Bi-Di* Data 3 AD3
5 Bi-Di* Data 4 AD4
6 Bi-Di* Data 5 AD5
7 Bi-Di* Data 6 AD6
8 Bi-Di* Data 7 AD7
9 Bi-Di* Data 8 (Most Significant Bit) AD8

10 P nAck PtrClk PtrClk PeriphClk Intr
11 P Busy PtrBusy PtrBusy PeriphAck nWait
12 P PError AckDataReq AckDataReq nAckReverse User defined 1
13 P Select Xflag Xflag Xflag User defined 3
14 H nAutoFd HostBusy HostBusy HostAck nDStrb
15 Not defined
16 Logic Gnd
17 Chassis Gnd
18 P Peripheral Logic High
19 Signal Ground (nStrobe)
20 Signal Ground (Data 1)
21 Signal Ground (Data 2)
22 Signal Ground (Data 3)
23 Signal Ground (Data 4)
24 Signal Ground (Data 5)
25 Signal Ground (Data 6)
26 Signal Ground (Data 7)
27 Signal Ground (Data 8)
28 Signal Ground (PError, Select, nAck)
29 Signal Ground (Busy, nFault)
30 Signal Ground (nAutoFd, nSelectIn, nInit
31 H nInit nInit nInit nReverseRequest nInit
32 P nFault nDataAvail nDataAvail nPeriphRequest User Defined 2
33 Not defined
34 Not defined
35 Not defined
36 H nSelectIn IEEE 1284 active IEEE 1284 active IEEE 1284 active nAStrb

NOTEPins not defined by this standard are used by manufacturers at their own risk.

*Data signals will be driven by some but not all peripheral devices.

8.2.2.3 IEEE 1284-C
Table 8 shows the pin numbers and their assigned signal names for the IEEE 1284-C connector. The 1284-
C connector is a miniature 36-pin ribbon type connector. A physical description of the IEEE 1284-C
connector can be found in figure 26.
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Table 8 -- IEEE 1284-C connector pin assignments

Pin # Source Compatible Nibble Byte ECP EPP
1 P Busy PtrBusy PtrBusy PeriphAck nWait
2 P Select Xflag Xflag Xflag User defined 3
3 P nAck PtrClk PtrClk PeriphClk Intr
4 P nFault NDataAvail nDataAvail nPeriphRequest User defined 2
5 P PError AckDataReq AckDataReq nAckReverse User defined 1
6 Bi-Di* Data 1 (Least Significant Bit) AD1
7 Bi-Di* Data 2 AD2
8 Bi-Di* Data 3 AD3
9 Bi-Di* Data 4 AD4

10 Bi-Di* Data 5 AD5
11 Bi-Di* Data 6 AD6
12 Bi-Di* Data 7 AD7
13 Bi-Di* Data 8 (Most Significant Bit) AD8
14 H nInit NInit nInit nReverseRequest NInit
15 H nStrobe HostClk HostClk HostClk NWrite
16 H nSelectIn IEEE 1284 active IEEE 1284 active IEEE 1284 active NAStrb
17 H nAutoFd HostBusy HostBusy HostAck NDStrb
18 H Host Logic High
19 Signal Ground (Busy)
20 Signal Ground (Select)
21 Signal Ground(nAck)
22 Signal Ground (nFault)
23 Signal Ground (PError)
24 Signal Ground (Data 1)
25 Signal Ground (Data 2)
26 Signal Ground (Data 3)
27 Signal Ground (Data 4)
28 Signal Ground (Data 5)
29 Signal Ground (Data 6)
30 Signal Ground (Data 7)
31 Signal Ground (Data 8)
32 Signal Ground (nInit)
33 Signal Ground (nStrobe)
34 Signal Ground (nSelectIn)
35 Signal Ground (nAutoFd)
36 P Peripheral Logic High

8.2.3 Cable interconnections

Interposer blocks and interconnecting cables shall be wired as shown in figures 27–31.  Electrical character-
istics of interconnecting cables shall meet the requirements of 8.3.1.
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Figure 27 -- IEEE 1284-A (Host) to IEEE 1284-A (peripheral) wiring diagram
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Figure 28 -- IEEE 1284-A (host) to IEEE 1284-B (peripheral) wiring diagram
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Figure 29 -- IEEE 1284-A (host) to IEEE 1284-C (peripheral) wiring diagram
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Figure 30 -- IEEE 1284-C (host) to IEEE 1284-B (peripheral) wiring diagram
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Figure 31 -- IEEE 1284-C (host) to IEEE 1284-C (peripheral) wiring diagram
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8.3 Electrical characteristics
The interface operates at 5 V logic levels. Interface voltage levels range between 0 V and +5 V (nominal),
not to exceed a peak positive voltage of +5.5 V, nor to exceed a peak negative voltage of -0.5 V.

Each connected device shall have electrical characteristics as specified in the following subclauses. All
characteristics specified apply to the total segment, i.e., host circuit card traces, host connector, cable,
peripheral connector, and peripheral circuit card traces, unless otherwise specified.

8.3.1 IEEE Std 1284-1994 compliant cable

The connecting cable shall consist of 18 pairs of signal wires and shall be double-shielded (both braid and
foil).

The arrangement of a typical cable is shown in figure 32.

Figure 32 -- Physical cable

Cable assemblies shall meet the following characteristics:

a) The minimum conductor size shall be 0.08042 mm2 (28 AWG).
b) The characteristic unbalanced impedance of each signal and ground pair shall be 62 Ω ± 6 Ω, over

the frequency band of 4–16 MHz.
c) The unbalanced capacitance of each cable pair shall not exceed 107 pF/m at 1 MHz.
d) The maximum dc resistance of each cable wire shall be 0.22 Ω/m at 20 °C.
e) Maximum end-to-end attenuation shall not exceed 1.5 dB at 5 MHz.
f) The maximum propagation delay of the cable shall be 58 ns.
g) The maximum propagation delay difference between any two signal pairs shall be 2.5 ns.
h) The maximum zero-to-peak crosstalk noise (both near end and far end) shall be 10% as measured

with a 5.0 ns rise/fall 2 MHz square wave, with each pair (source and victim) terminated in its char-
acteristic impedance at both ends (see figure 33).

i) The cable shall have a minimum of 85% optical braid coverage over the foil.
j) The cable shield shall be soldered to the connector backshell using a 360° concentric method low

impedence connection. A pigtail type connection is not acceptable.
k) Each signal pair shall be twisted at least 36 turns/m.
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Signal Generator Characteristics Duty cycle is 50%
VO is the output voltage (0 V to 5 V into cable)
TR is the rise time of the signal (5 ns)
TF is the fall time of the signal (5 ns)

Measurements VNE is the near end voltage, maximum voltage (zero to peak)
VFE is the far end voltage, maximum voltage (zero to peak)
CrosstalkNE is the near end crosstalk, | VNE(MAX) / VO)|
CrosstalkFE is the far end crosstalk, | VFE(MAX) / VO|
ZO is the pulse generator output (50 Ω)

The frequency of the output pulse is 2 MHz.

Figure 33 -- Crosstalk measurment technique

Cable assemblies that meet these requirements shall be clearly and permanently labeled “IEEE Std 1284-
1994 compliant” to distinguish them from cables having the same type of connectors but different electrical
characteristics.

8.3.2 Level 1 device

Level 1 devices drive the interface with asymmetric 5 V TTL circuits. Level 1 device requirements are
designed to remain consistent with pre-existing installed devices. These devices are characterized by steady-
state electrical specifications.

To assure operation with other Level 1 (or compatible) devices, the manufacturer shall provide sufficient
voltage and timing margins to assure operation with at least 2 m of IEEE Std 1284-1994 compliant cable
(unless the device is designed and intended to attach directly) when connected to a device that meets mini-
mum Level 1 requirements.

Level 1 compliant devices shall meet all the electrical and timing requirements specified in the following
subclauses.
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8.3.2.1 Driver Requirements
a) Drivers shall operate at nominal +5 V TTL levels.
b) The open circuit high-level output voltage shall not exceed +5.5 V.
c) The open circuit low-level output voltage shall be no less than -0.5 V.
d) The high-level output voltage shall be at least +2.4 V at a source current of 0.32 mA.
e) The low-level output voltage shall not exceed +0.4 V at a sink current of 14 mA.
f) Pull-up resistors, if present, shall be not less than 1.8 kΩ ± 5% for control and status signals, and

not less than 1.0 kΩ ± 5% for data signals.
g) Circuit and stray capacitance shall not exceed 50 pF of uncompensated capacitance. Additional

capacitance may be compensated for by providing additional source and sink currents within the
driver circuitry.

8.3.2.2 Receiver Requirements
a) Receivers shall operate at nominal +5 V TTL levels.
b) The receiver high-level input threshold shall not exceed 2.0 V.
c) The receiver low-level input threshold shall be at least 0.8 V.
d) The receiver high-level input sink current shall not exceed 0.32 mA at +2.0 V.
e) The receiver low-level input source current shall not exceed 12 mA at +0.8 V.
f) Pull-up resistors, if present, shall be not less than 470  Ω ± 5% for control and status signals, and

not less than 1000 Ω ± 5% for data signals. It is recommended that these minimum values be used.
Current supplied by pull-up resistors, if present, shall be included in the input current limits, points
d and e.

g) Circuit and stray capacitance shall not exceed 50 pF of uncompensated capacitance. Compensation
for larger capacitance may be supplied by a pull-up resistor, provided that it meets the requirements
of point f.

h) The maximum rise or fall time is as expected for a 2 m cable, 120 ns as measured between the 0.8 V
and 2.0 V levels.

i) The receiver should be able to withstand peak input voltage transients between -2.0 V and +7.0 V
without damage or improper operation.

8.3.3 Level 2 device

Level 2 devices drive the interface with 5 V circuits with ac symmetric impedances. However, receiver
inputs operate with TTL-compatible logic level thresholds.

Level 2 devices capitalize on the transmission line characteristics of the connecting cable. Driver output
impedance is matched to the characteristic impedance of the cable, while receiver inputs terminate the cable
with a deliberate high-impedance mismatch. When the driver changes state, this produces an incident volt-
age wave in the cable, with a magnitude of half the applied voltage. When this voltage wave reaches the
high-impedance receiver, the mismatch produces a reflection (which essentially doubles the voltage) so that
the initial applied voltage appears across the receiver.

The reflected wave from the impedance mismatch then propagates back along the cable. When this voltage
wave reaches the driver, its output voltage completes the transition to the final steady-state voltage level,
where it remains until the next transition.

All input signals provide pullup resistors to +5 V to ensure operation with Level 1 and compatible devices.
The specified value (1.2 kΩ ± 5%) is a compromise. This value provides sufficient current to meet Level 1
timing, while providing 90% reflection of the incident voltage at the receiver.

Level 2 compliant devices shall meet all the electrical and timing requirements specified in the following
subclauses.

8.3.3.1 Driver Requirements
a) The open circuit high-level output voltage shall not exceed +5.5 V.
b) The open circuit low-level output voltage shall be no less than -0.5 V.
c) The dc steady-state, high-level output voltage shall be at least +2.4 V at a source current of 14 mA.
d) The dc steady-state, low-level output voltage shall not exceed +0.4 V at a sink current of 14 mA.
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e) The driver output impedance (RO in figure 34) shall be 45–55 Ω, at one-half the actual driver VOH

minus VOL voltage, (VOH and VOL are the actual measured voltages of the output device). This
causes the driver to generate an incident wave slightly in excess of one-half VOH minus VOL ampli-
tude into an infinitely long 62 Ω transmission line, as measured at the driver/cable interface, for
transitions in either direction.

f) The driver slew rate shall be 0.05–0.40 V/ns.

The values for items e and f are measured at the connector pin under load.
8.3.3.2 Receiver Requirements

a) The receiver shall withstand peak input voltage transients between -2.0 V and +7.0 V without dam-
age or improper operation.

b) The receiver high-level input threshold shall not exceed 2.0 V.
c) The receiver low-level input threshold shall be at least 0.8 V.
d) The receiver shall provide at least 0.2 V input hysteresis. Increasing this hysteresis (up to a maxi-

mum of 1.2 V) will improve noise immunity.
e) The receiver high-level input sink current shall not exceed 20 µA at +2.0 V.
f) The receiver low-level input source current shall not exceed 20 µA at +0.8 V.
g) Circuit and stray capacitance shall not exceed 50 pF.

8.3.4 Level 2 example

Simplified examples of Level 2 drivers, receivers, and transceivers are shown in figures 34 and 36.

The intent of the termination is to match the characteristic impedance at the source and have a high imped-
ance at the load. This will cause half the source voltage to be injected into the cable and a doubling of volt-
age at the load. Because of component tolerance, the matching source impedance is slightly lower than the
nominal characteristic impedance of the cable to guarantee proper voltage levels at the load.

Referring to figure 34, RD is output impedance of the circuitry of the active driver. RS is a series resistor
used for impedance matching. RO represents the combined output impedance of the driver and impedance
matching resistor (the sum of RD and RS). RO is less than the cable impedance (ZO) as specified by item e) of
8.3.3.1.
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Figure 34 -- Level 2 driver/receiver example

Figure 35 combines the driver and receiver circuitry to form a transceiver. The addition of the 1.2 kΩ resis-
tor does not significantly affect the output driver impedance (RO). RI is the input driver impedance.

Figure 35 -- Level 2 transceiver example

Figure 36 -- Typical power-off detection circuit
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8.3.5 Power-off state of the interface

The Host Logic High and Peripheral Logic High signals may be used by the peripheral and host
respectively to detect a powered-off or cable-disconnected state. To ensure that this can be detected, both
the IEEE 1284 host and IEEE 1284 peripheral shall provide circuitry to guarantee a low logic level (2.0 V
or less) on these signals when they are powered off. The receiver shall provide an impedance equivalent to
7.5 kΩ to ground.

On power-up sequences, an IEEE 1284 device shall guarantee that the signals that it sources be in a valid
state within 500 ms of its respective logic high signal (Host Logic High or Peripheral Logic High) equal or
exceeding 3.0 V. See figure 36 for a typical power-off detection circuit.

8.3.6 Environmental specifications

8.3.6.1 General safety
All equipment meeting this standard shall conform to IEC 950 : 1991.

8.3.6.2 Cabling safety
NOTE—This subclause sets forth a number of recommendations and guidelines related to safety concerns; the list is
neither complete nor does it address all possible safety issues. The designer is urged to consult the relevant local,
national, and international safety regulations to ensure compliance with the appropriate requirements.

Cable systems described in this subclause are subject to at least four direct electrical safety hazards during
their installation and use. These hazards are as follows:

a) Direct contact between cabling components and power, lighting, or communication circuits.
b) Static charge buildup on cables, components, and users.
c) High-energy transients coupled onto the cable system.
d) Voltage potential differences between grounds to which various components are connected.

Such electrical safety hazards shall be avoided or appropriately protected against for proper cable installa-
tion and performance. In addition to provisions for proper handling of these conditions in an operational
system, special measures shall be taken to ensure that the intended safety features are not negated during
installation of the new cable system or during modification or maintenance of the existing cable system. Iso-
lation requirements are not a part of this standard.

8.3.6.3 Grounding
The cable shield should be grounded to the chassis of both the attached peripheral and the host computer.

8.3.6.4 Electromagnetic emission and electromagnetic susceptibility (EMC)
Specific requirements for applicable local and national codes are considered beyond the scope of this
standard.

8.3.6.5 Temperature and humidity
The interface is expected to operate over a reasonable range of environmental conditions related to the tem-
perature, humidity, and physical handling (such as shock and vibration). Specific requirements and values
for these parameters are considered beyond the scope of this standard. It is recommended that
manufacturers indicate in product specifications of the devices the distance and operating environmental
conditions over which the aforementioned specifications will be met.
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9 Software support

9.1 General considerations
There are several conceptual layers involved in communication with a peripheral. The software layers
affected by IEEE 1284 are

a) The software that manipulates the interface hardware to transfer information
b) The software that prepares the information to send, or interprets the information received

Depending on the host operating environment of interest, the name “device driver” may encompass either or
both of the these components. For purposes of this discussion, “driver” will refer to item a) (the software
that manipulates the hardware) and “application” will refer to item b) (the software that prepares or
interprets information).

Peripheral data is available only when the host places the interface in a mode capable of peripheral-to-host
data transfer. This requires the host periodically to place the interface in one of these modes to retrieve any
data that might be available. This polling might be under the applications control, or the operating system
could start a timer task that would periodically check the peripheral for available data. When data is avail-
able, the system could either receive the message and hold it for an application or notify an application to
retrieve the data.

Polling can be reduced or eliminated by leaving the interface in an IEEE 1284 idle phase (reverse idle phase
for the Nibble and Byte Modes) whenever possible. In one of the IEEE 1284 idle phases, the driver may
eliminate polling by enabling an interrupt (if supported by the host hardware) to occur when the peripheral
has data to report. If an interrupt cannot be used, then the complexity of polling can be reduced from an
IEEE 1284 negotiation to a simple port read, if the interface is in an IEEE 1284 idle phase.
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9.2 Application level compatibility
The IEEE 1284 interface requires the operating system vendor to provide a new driver that can access the
status read-back features of the new interface. These new features make more interactive information avail-
able to applications. However, application software support of the advanced functionality will not be avail-
able until new versions of the applications are released. Therefore, to ensure that current applications
operate correctly with the IEEE 1284 interface, it is important that the IEEE 1284 driver be backward
compatible with drivers available at the current time.

9.3 MS-DOS IEEE 1284 driver
The new driver can be designed to replace or supplement the current BIOS driver or can use the MS-DOS
driver interface. Since all BIOS accesses to the parallel port are typically byte oriented, and since MS-DOS
typically uses higher efficiency block transfers, the MS-DOS interface is preferred. Both interfaces should
be implemented to remain consistent with current BIOS and MS-DOS device usage. Using the typical BIOS
API, data is sent to a peripheral a byte at a time, and status will be read back a byte at a time. Using the MS-
DOS API, data could be sent or read in blocks of several bytes (or even several kilobytes) for greater
throughput. BIOS level functions could also be implemented to transfer blocks of data.

9.4 Windows 1284 driver
In the Windows environment, the COMM Driver can be replaced by a new driver that allows reading of
LPT ports in addition to the current functionality of writing to LPT ports, and reading and writing COM
ports. As a multitasking, message-based environment, Windows stands to benefit more than other
environments (such as MS-DOS) by using the IEEE 1284 idle phase. In addition, there is no “byte” oriented
transfer to support, hence the block features of IEEE Std 1284-1994 can be fully utilized to achieve the
greatest throughput.

9.5 Reverse channel data
One of the objectives of the IEEE 1284 interface is to provide a separation between the physical link that is
sending data and the data itself. The definition of the information that will be transferred to the host will be
peripheral specific; therefore, the driver shall transfer the data in both directions without attempting to inter-
pret the information. The driver shall assume that binary data is being transferred and shall transfer each
byte to or from the application without modification.

9.6 Link performance
The “burst” rate of transferring data through the link will depend on the speed of the host computer, the
driver implementation, and the peripheral being used. Overall software performance and link throughput
will depend upon the application-to-driver interface and the polling rate, as well as the burst rate of transfer-
ring a status message once the host begins the transfer.
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Annex A 
Timing specifications

(normative)  

Output signal timing is specified at the VOH and VOL levels, as measured at the source device connector.
Input signal timing is specified at the VIH and VIL levels, as measured at the receiving device connector.

Figure A 1 -- Typical timing waveforms

Timing measurements are made with all device outputs terminated as shown in figure A2 and all device
inputs terminated as shown in figure A3.

Each timing specification includes a compliance requirement, which indicates whether this specification
applies to the host or the peripheral and whether the specification applies to all compatible devices, or just
to IEEE Std 1284-1994 compliant devices.
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Rpullup is the pullup resistor
Rterm is the termination resistor
Cterm is the termination capacitor

Figure A 2 -- Driver test termination ac equivalent circuit

Rhigh is the pullup resistor
Rlow is the pulldown resistor
Cslew is the capacitor that controls the slew rate

Figure A 3 -- Receiver test termination ac equivalent circuit
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Annex B 
Signal transition events
(normative)  

Each signal transition diagram has numbers corresponding to the events that cause the transitions. The fol-
lowing is a list of those events.

0)  Host sets extensibility request value on data bus: 00h for Nibble Mode, 01h for Byte Mode, etc.
1)  Host requests an IEEE 1284 mode transfer by setting IEEE 1284 Active(nSelectIn) high and

HostBusy(nAutoFd) low.
2)  Peripheral indicates IEEE 1284 support by setting AckDataReq(PError), Xflag(Select), and

nDataAvail(nFault) high, and PtrClk(nAck) low.
3)  Host sets HostClk(nStrobe) low to latch extensibility request value into peripheral.
4)  After waiting the minimum HostClk(nStrobe) pulse width, host sets HostClk(nStrobe) and

HostBusy(nAutoFd) high to acknowledge the support by the peripheral of IEEE 1284 protocol.
5)  Xflag(Select) is set to reflect the support by the peripheral of the requested extension. Busy is

set to indicate whether the peripheral can accept data from the host in the Compatibility Mode.
For the Nibble and Byte Modes, the peripheral sets nDataAvail(nFault) to indicate whether
data is available and AckDataReq(PError) to match nDataAvail(nFault).

6)  Peripheral sets PtrClk(nAck) high, informing the host that the four interface status signals are
valid.

7)  Host sets HostBusy(nAutoFd) low to indicate that it can accept data.
8)  Peripheral places a nibble on the four status lines (low order nibble for first handshake, high

order nibble for second handshake).
9)  Peripheral sets PtrClk(nAck) low to indicate that data is valid.
10)  Host sets HostBusy(nAutoFd) high to handshake with the peripheral and (in Nibble Mode) to

indicate that it has received data and cannot accept more at the moment.
11)  Peripheral acknowledges receipt of data by the host by setting PtrClk(nAck) high.
12)  Host sets HostBusy(nAutoFd) low, indicating that it can accept the second nibble.
13)  Peripheral sets status lines to indicate if a subsequent peripheral to host byte is ready to

transfer, and sets PtrBusy to indicate its current forward channel status.
14)  In Byte Mode, host places data bus in a high impedance state in anticipation of peripheral-to-

host transfer. In the Nibble Mode, the data bus is undefined.
15)  In Byte Mode, peripheral places bytes on data bus.
16)  Host sets HostClk(nStrobe) low. This event may happen after the falling or rising edge of Ptr-

Clk(nAck), i.e., events 9 and 11. It is defined in the diagrams to occur coincident with event
10. The peripheral shall not interpret this event as a latch signal for forward channel data.

17)  Host sets HostClk(nStrobe) high. It shall occur before or coincident with setting Host-
Busy(nAutoFd) low (event 7).

18)  Peripheral sets nDataAvail(nFault) low to indicate data is available, and sets PtrClk(nAck) low.
19)  After waiting the minimum pulse width, the peripheral sets PtrClk(nAck) high to generate an

interrupt to the host.
20)  Host sets HostBusy(nAutoFd) high to acknowledge the request of the peripheral.
21)  Peripheral sets AckDataReq(PError) low to acknowledge the host.
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22)  Host sets IEEE 1284 Active(nSelectIn) low and HostBusy(nAutoFd) high (if not already) to
request termination of IEEE 1284 mode.

23)  Peripheral places data bus in a high impedance state (if in Byte Mode) and sets Busy and
nFault high.

24)  Peripheral acknowledges the request of the host by setting PtrClk(nAck) low and Xflag(Select)
to its opposite sense.

25)  Host handshakes with the peripheral by setting HostBusy(nAutoFd) low.
26)  Peripheral sets AckDataReq(PError), nDataAvail(nFault), Xflag(Select) and nReverseRe-

quest(nInit) in ECP Mode to their current Compatibility Mode values. Busy is still high to
block incoming data.

27)  Peripheral completes handshake by setting PtrClk(nAck) high.
28)  Host completes handshake by setting HostBusy(nAutoFd) high.
29)  Peripheral updates Busy to current Compatibility Mode status.
30)  Host sets HostAck (nAutoFd) low to acknowledge successful negotiation.
31)  Peripheral acknowledges that it is now operating in ECP Mode by raising nAckReverse

(PError). PeriphAck (Busy) and nPeriphRequest (nFault) are now active.
32)  Peripheral drives PeriphAck (Busy) low, indicating that it is ready to accept data.
33)  Host is idle.
34)  Host places Data on the bus. The command bit (nCmd/HostAck) is driven to the appropriate

level.
35)  Host sets HostClk (nStrobe) low to indicate valid data is on the bus.
36)  Peripheral handshakes, setting PeriphAck (Busy) high.
37)  Host raises nStrobe to continue the handshake. The peripheral is expected to use this edge of

nStrobe to latch the data.
38)  Host places the data bus in a high impedance state and sets HostAck (nAutoFd) low to prepare

for a bus reversal.
39)  Host sets nReverseRequest (nInit) low to initiate a bus reversal.
40)  Peripheral sets nAckReverse (PError) low to acknowledge the bus reversal. HostAck

(nAutoFd) is now active.
41)  Peripheral is idle.
42)  Peripheral drives Data and nCmd (Busy) onto the bus.
43)  Peripheral sets PeriphClk (nAck) low to indicate that data is available on the bus.
44)  Host acknowledges the assertion of PeriphClk (nAck) by setting HostAck (nAutoFd) high.
45)  Peripheral continues the handshake by setting PeriphClk (nAck) high. The host is expected to

use this edge of PeriphClk to latch the data.
46)  Host completes the transfer, accepting the byte by setting HostAck (nAutoFd) low.
47)  Host sets nReverseRequest (nInit) high to initiate a bus reversal (back to the forward direction).

The host may continue to handshake, receiving don’t care data.
48)  Peripheral terminates any ongoing transfer, places the data bus in a high impedance state, sets

PeriphClk (nAck) high, and places valid status on the PeriphAck (Busy) and nPeriphRequest
(nFault) lines.

49)  Peripheral acknowledges that the bus has been relinquished by setting nAckReverse (PError)
high.

50)  Host places the additional extensibility byte on the data bus.
51)  Host sets HostClk(nStrobe) low after waiting the data setup time to tell the peripheral that the

additional extensibility byte should be read.
52)  Peripheral sets PtrClk(nAck) low to tell the host that it has captured the byte.
53)  Host sets HostClk(nStrobe) high.
54)  Peripheral sets Xflag(Select) to reflect support of the requested extension by the peripheral.

PtrBusy(Busy) is updated to indicate whether or not the peripheral can accept data from the
host in Compatibility Mode.

55)  Peripheral, after a data setup time, sets PtrClk(nAck) high, informing the host that the four
interface signals are valid.



PARALLEL PERIPHERAL INTERFACE FOR PERSONAL COMPUTERS IEEE
Std 1284-1994

79

56)  Host sets nAStrb(nSelectIn) low to indicate that an address cycle is taking place. During write
cycles, the host will also assert nWrite(nStrobe) low. At this time, the host also places an
address byte on the parallel port data lines.

57)  Peripheral holds the state of the AckDataReq(PError), Intr(nAck), nDataAvail(nFault), and
XFlag(Select) until the first EPP cycle is initiated by either the nAStrb(nSelectIn) or
nDStrb(nAutoFd) going low. At this time, these signals are peripheral-to-host status bits,
except for Intr(nAck), which is used to generate interrupts to the host.

58)  Peripheral sets nWait(Busy) high to indicate that it has accepted the data sent during a write
cycle and to indicate that it has placed a valid byte of data on the data lines during a read cycle.

59)  Host sets nAStrb(nSelectIn) high to indicate that the cycle is complete.
60)  Peripheral sets nWait(Busy) low to indicate that it is ready for the next EPP transfer.
61)  In response to the peripheral de-asserting the nWait(Busy) signal, the host sets nWrite(nStrobe)

high and places the data lines in a high impedance state.
62)  Host sets nDStrb(nSelectIn) low to indicate that a data cycle is taking place. During write

cycles, the host will also assert nWrite(nStrobe) low. At this time, the host also places a byte of
data on the parallel port data lines.

63)  Host sets nDStrb(nSelectIn) high to indicate that the cycle is complete.
64)  Host sets nAStrb(nSelectIn) low to indicate that an address cycle is taking place. In addition,

the host does not assert nWrite(nStrobe), which implies a read operation.
65)  Data valid from peripheral.
66)  Data lines from peripheral are placed in a high impedance state.
67)  Host sets nDStrb(nSelectIn) low to indicate that a data cycle is taking place. In addition, the

host does not assert nWrite, which implies a read operation.
68)  Host sets nInit low in order to terminate EPP Mode and return to Compatibility Mode.
69)  Host sets nInit high.
70)  Peripheral asserts the Intr(nAck), indicating an interrupt from the peripheral to the host.
71)  Peripheral de-asserts the Intr(nAck), completing the interrupt phase.
72)  After waiting for the minimum required time (TS), the host may abort the host-to-peripheral

data transfer in progress by setting nReverseRequest (nInit) low.
73)  Peripheral handshakes, setting nAckReverse (PError) low and (if not already set) PeriphAck

(Busy) low, indicating that the peripheral-to-host data transfer in progress has been aborted
and the data byte has been discarded.

74)  Host raises nReverseRequest (nInit) and HostClk (nStrobe) to continue the handshake.
75)  Peripheral completes the handshake by raising nAckReverse (PError) high, returning the link to

a host idle condition.

Annex C 
Centronics and PC-compatible parallel interfaces
(informative)  

C.1 Purpose and scope
This annex provides a description of the existing Centronics-compatible and PC-compatible parallel printer
interfaces in widespread use throughout the industry. This annex is not a part of the IEEE Std 1284-1994,
but is included for information only. It serves to provide a formal definition of Compatibility Mode devices,
as well as providing a historical perspective of the development of this de facto standard interface.  This
annex should not be used for new designs.  Designing to the IEEE Std. 1284 will provide compatibility with
these older implementations.

This attachment provides a baseline specification of interface characteristics and operations for both hosts
and printers. The IEEE 1284 interface is designed to be interoperable with many devices that meet these
specifications.
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This annex is divided into the following clauses:

—  Centronics interface background information
—  Classic Centronics parallel interface
—  PC-parallel and PC-compatible printer interfaces
—  Enhanced and bidirectional parallel printer interfaces
—  Printer interface variations

C.2 Centronics interface background information
The “Centronics-compatible” printer interface is a unidirectional 8 b parallel host-to-printer connection.
This interface was introduced by Centronics Data Computer Corporation in the mid-1960s for a series of
small serial-impact printers. This series of printers was very successful in the market, and the “Centronics-
compatible” interface has become the primary interface used between most small computers and associated
printers.4

Although widely used, there is no existing industry standard specification for this interface. When a device
claims it supports a “Centronics-compatible” interface, this simply means the interface is backward-compat-
ible with Centronics printers introduced roughly 30 years ago. The core set of signals in a Centronics-com-
patible interface typically include

—  Eight data lines (host to printer)
—  Two control lines (host to printer)
—  Five status lines (printer to host)

PC-compatible computers provided a basic Centronics-compatible printer interface, with a few additional
control signals. Some major PC manufacturers added bidirectional driver circuits to the hardware. However,
this capability has remained unused due to the absence of standard data link and data transfer protocols.

Data transfer rates have also remained limited. With absolute minimum Centronics setup, hold, and pulse
width times, the theoretical transfer rate limit of the printer is 100 000 B/s. However, when connected to
host systems, response time latency and software overhead often greatly reduce this figure. For example, the
typical PC transfer rate is only 10 000 B/s.

Printer control and status provided by the classic Centronics interface is primitive at best. While this was
adequate for simple, “dumb” text printers of previous decades, it is increasingly inadequate for
sophisticated modern printers and multi-user networked environments. Today, printed pages consist of
mixed text and graphics, or even pure graphics, which may require over a million bytes of data per page.
Limited data transfer rates are often a bottleneck, and users complain bitterly when their pages-per-minute
printer prints at minutes-per-page speed. These shortfalls are directly addressed by this standard.

                                                     
4The original Centronics interface often contained several additional signals, usually differing by printer model. Also, some manufac-
turers have added other signals to the interface. However, this list includes all the basic signals needed to realize the interface.
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C.3 Classic Centronics Standard Parallel Interface
This clause provides core specifications for the classic Centronics Standard Parallel Interface.5 This
includes interface connector and pin assignments, signal definitions and characteristics, and electrical
specifications. Paralleling the historical development of the interface, this description is focused at the
printer end.

The Centronics standard defined the interface signals only at the printer. Host implementations varied
widely (often uniquely) from host system to host system in both supported signals and interface connectors,
although 37-pin D-shell (DB-37) connectors were often used on host computers. A predominant host imple-
mentation did not emerge until after 1981, with the introduction of the DOS-compatible PC. (The PC imple-
mentation is discussed in C.4.)

C.5.1 Interface connector and pin assignments

The Centronics standard external interface connector is a 36-pin Amphenol No. 57-40360 or equivalent
connector. This connector is, by definition, the same as the IEEE 1284-B connector.

Signal names, external interface connector pin assignments, and signal sources are listed in table C1. The
interface was designed to be used with twisted pair cabling. Separate return leads (signal ground) need to be
twisted within the cable to protect critical signals. For these signals, a second pin number is listed in the
table. While all these pins are connected to signal ground within the printer, the cable return lead twisted
with the specified signal shall be connected to this pin within the connector.

C.5.2 Signal definitions

Definitions of host- and printer-generated signals are given in the following subclauses.

                                                     
5These specifications are taken from Centronics Engineering Standard Number 9, Revision B, dated April 9, 1980, with supplemental
information from Centronics Field Bulletins, with the permission of Genicom Corporation.
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Table C 1  -- Centronics connector pin assignments

Signal name Pin Source Signal name Pin Source
/Strobe 1, 19 Host Select (On-line) 13 Printer
Data 1 2, 20 Host Signal Ground* 14
Data 2 3, 21 Host OscExt 15 Printer
Data 3 4, 22 Host Signal Ground 16
Data 4 5, 23 Host Chassis Ground 17
Data 5 6, 24 Host +5 V 18 Printer
Data 6 7, 26 Host /Input Prime 31, 30 Host
Data 7 8, 25 Host /Fault 32 Printer
Data 8 9, 27 Host Light Detect* 33 Printer
/Ack 10, 28 Printer Line Count 34 Printer
Busy 11, 29 Printer Line Count Return 35 Printer
Paper Empty 12 Printer Reserved* 36 Printer
NOTES
1Second pin number is twisted pair return (signal ground).
2A leading slash (e.g., “/Name”) denotes an active low signal.
3Signals marked with “*” (pins 14, 33, and 36) were redefined as host-source signals in the PC-
compatible interface and are required for IEEE Std 1284-1994 bidirectional operation.

A. Strobe
(Pins 1/19)

This negative going pulse is used to transfer incoming data from the data lines into
the printer electronic circuitry. The pulse duration has to be a minimum of 1.0 µs,
not to exceed 500 µs. This signal drives TTL logic terminated by a 470 Ω resistor
to +5 V. See figure C1 for the relationship of leading and trailing edges of the data
strobe with data on data lines.

B. Data Lines
(Pins 2/20,
3/21, 4/22,
5/23, 6/24,
7/25, 8/26,
9/27)

The eight (8) data lines drive TTL logic terminated by a 1 kΩ resistor to +5 V. A
high logic level represents a binary one, and a low logic level represents a binary
zero. The logic level of each data line has to be settled at least 1 µs before the
leading edge of the strobe pulse and remain at its logic level at least 1 µs after the
trailing edge of the strobe pulse.6

C. Input Prime
(Pins 31/30)

This line, when low, causes the input buffer to be cleared, the printer logic to be
reset, and the print head to be returned to the left margin. This signal is termi nated
by a 470 Ω resistor to +5 V.

                                                     
6Typically, the Data 1 signal is used for the least significant bit, and Data 8 for the most significant bit, of the data byte being
transferred. However, this is strictly a convention, as data interpretation is the responsibility of the processes that are commu nicating
via this interface. Interface operation in no way depends on any particular bit order or meaning.

C.5.3.1 Host-generated signals

Host-generated signals consist of the eight data lines plus two control signals. The characteristics of each of
these, and the associated connector pins, are listed on page 80 .
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C.5.3.2 Printer-generated signals

There are ten printer-generated signals, plus one pin reserved for printer-specific functions. The characteris-
tics of each of these, and the associated connector pins, are listed on page 81.

Five of these signals, by common usage, belong to the “core set” needed to realize the interface. These five
“core” signals are Acknowledge, Busy, Paper Empty, Select, and Fault.

A. Acknowledge
(Pins 10/28)

This negative going signal is used to verify the completed transfer of incoming
data or to signify the completion of a functional operation (such as carriage return,
line feed, vertical tab, form feed, delete, or bell). Once a code is sent to the printer,
an acknowledgment pulse has to be received before a new code can be sent (unless
otherwise specified). The acknowledgment pulse is sourced from a TTL logic
circuit for at least 1µs. All codes are acknowledged even if it is a nonfunctional
code for the product. Transmission of data prior to receipt of acknowledge for the
previous data may result in loss of data.

B. Busy (Pins
11/29)

This high going signal provides a positive dc level indication during any interval
when the printer cannot receive data. It is also positive (active) when the paper-
empty and/or fault status line is true or an input prime is present. It is sourced from
the output of a TTL logic circuit.

C. Paper Empty (Pin
12)

This high going signal provides a positive dc level indication during a paper-
empty condition. A paper-empty condition also causes the fault and busy lines to
be active. It is sourced from the output of a TTL logic circuit.

D. Select (Pin 13) This high going signal provides a positive dc level indication that the printer is
selected and is available for data transfer. The nonselect condition (de-select)
causes the busy and fault lines to be active. It is sourced from the output of a TTL
logic circuit.

E. External
Oscillator (Pin
15)

This external oscillator signal is provided for external interface timing (typically
100-200 kHz, when present). This signal is sourced from a TTL logic circuit.

F. +5 V (Pin 18) This high going signal provides a positive dc level indication that the printer is
connected and powered on.

G. Fault (Pin 32) This low going signal provides a positive dc level indication that a fault condition
exists in the printer. This signal is sourced from a TTL logic circuit.

H. Light Detect (Pin
33)

This high going signal provides a positive dc level indication that indicates the
video lamp is inoperative. It is sourced from the output of a TTL logic circuit.

I. Line Count (Pin
34)

Both sides of the line count switch appear at the interface connector. This switch is
opened and closed during each line feed operation. A voltage level delivered to the
switch would be pulsed off and on each time a line feed operation is per formed.

J. Line Count
Return (Pin 35)

Return side of line count switch. Refer to Line Count signal.

K. Reserved (Pin
36)

Not used. This pin is reserved for printer-specific functions.7

                                                     
7Pin 36 was redefined in the PC-compatible interface to be an input signal. Please refer to clause 5 for additional information.

C.5.3 Electrical specifications
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C.5.3.1 Voltage levels

The interface circuitry is +5 V (nominal) TTL logic (SN7400 Series).  Voltage levels range between 0 V
and +5 V (nominal).

C.5.3.2 Logic levels, pulses, and time

A logic One (or high) signal is defined as a voltage in the range of +2.4 V to +5 V, not to exceed a peak
positive voltage of +5.5 V.

A logic Zero (or low) signal is defined as a voltage in the range of 0.0 V to +0.4 V, not to exceed a peak
negative voltage of -0.5 V.

A signal whose pulse width is not critical is defined as a level (e.g., the data inputs). A signal whose pulse
width is critical is defined as a pulse (e.g., Strobe), and the pulse width is specified. Pulse width is measured
at +2.4 V for a logic One and +0.4 V for a logic Zero.

Delay time is defined as the interval between the specified signal and the reference signal at the receiving
end of the cable. It is measured at the +2.4 V point for a logic One and +0.4 V for a logic Zero.

Switching time is defined as the rise or fall time of a signal, whichever is greater. It is specified between
+0.4 V and +2.4 V points. Maximum switching time for signals is 0.2 µs (not including setup and hold
times).

C.5.3.3 Current requirements

The printer interface can source up to 0.320 mA at +2.4 V for a high signal output and sink up to 14 mA for
a low voltage. Similarly, the sending device interface has to be able to source 0.320þmA at +2.4 V for a
high voltage and sink up to 14 mA for a low output.

C.5.3.4 Line termination

The printer interface terminates input data lines Data1–Data8 with 1 kΩ to +5 V and control lines Strobe
and Input Prime with 470 Ω to +5 V.

C.5.4 Interface timing

In general, the data transfer sequence consists of the host device placing the appropriate character code on
the data lines to the printer and then generating the Strobe pulse. The printer, after a slight delay, responds
by activating the Busy signal, then deactivates Busy and generates an Acknowledge pulse. This sequence is
illustrated in figure C1.

There are four timing features of particular interest in the Centronics Standard Parallel Interface.

a)  A Strobe pulse is not recognized until the previous character data has been acknowledged.
b)  The Strobe pulse is used as a gated signal, and the data value sampled is the state of the data lines at

the trailing edge of Strobe. (In contrast, both the IEEE 1284 interface and some recent “Centronics-
compatible” printers latch the data lines at the leading edge of Strobe.)

c)  The Ack pulse follows the trailing edge of Busy. (A significant later change was to put the Ack
pulse inside of Busy.)

d)  The busy period (after receipt of Strobe) may be prolonged indefinitely. That is, there is no
specified maximum time for which Busy may be asserted.
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Figure C 1 -- Centronics Standard Parallel Interface timing

C.4 PC Parallel and PC-Compatible Printer Interfaces
The PC Parallel Interface was introduced by International Business Machines Corporation in 1981 for a
series of small personal computers. Originally provided as a second interface on the Monochrome Adapter
card, this interface has been widely adopted throughout the industry, becoming the first dominant Centron-
ics-compatible host-side implementation. At the same time, a series of PC-compatible printers were intro-
duced. These printers provided a parallel interface that was, in most respects, Centronics-compatible,
although it contained several differences. This printer variant of the parallel interface has become known as
the PC-Compatible Printer Interface.

This clause provides core specifications for the PC-Compatible Printer Interface and the PC Parallel Inter-
face.8 This includes interface connector and pin assignments, and electrical specifications. Signal descrip-
tions are limited to differences from the Centronics Standard Parallel Interface, described in the preceding
clause.

The PC Parallel Interface, although Centronics-compatible, introduced three significant differences.

a)  The host interface used a 25-pin D-shell (DB-25) connector, reducing the pin count by terminating
ten of the cable return leads into five ground pins inside the cable connector (i.e.,connector pins 18-
22 are each attached to two cable wires).9

b)  Two additional host control signals were defined, AutoFdXT and Select In. On the printer end,
three signals were redefined to accommodate the added control signals and return leads.

c)  The printer data transfer timing was modified to move the Acknowledge pulse inside the Busy sig-
nal, such that Acknowledge ended at the same time that Busy ended. However, the PC host
interface remained Centronics-compatible, as it ignored the Acknowledge/Busy timing relationship.
The PC interface relied on the Acknowledge pulse for data transfer handshaking.

                                                     
8These specifications are taken from the IBM Personal Computer Technical Reference Options and Adapters Manual, Number
6322509, with supplemental information from the IBM Personal Computer Hardware Reference Library, Volume V (Number
6025005) and the Epson Dot Matrix Printers Reference Manual (© 1988 Epson America, Inc.)
9This smaller connector allowed both the Monochrome Display and the Parallel Interface circuitry to be placed on a single card. A 37-
pin connector, while often used on earlier host systems, required almost all of the limited card-edge connector space. Using a 25-pin
connector for the parallel interface allowed two connectors to be placed in this very valuable space, as the monochrome display
connector was very small.
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In addition to the Acknowledge/Busy timing change, the PC-Compatible Printer Interface also increased
signal line termination values.

C.5.1 Interface connectors and pin assignments

The PC Parallel Interface connector is a female 25-pin D-shell (DB-25) connector. This connector is, by
definition, the same as the IEEE 1284-A connector. The PC-Compatible Printer Interface connector is the
same 36-pin D-shell as the classic Centronics interface (IEEE 1284-B connector). Table C2 specifies signal
names, connector pin assignments and corresponding printer connector pins, and signal sources.

Table C 2 -- PC Parallel Interface and PC-Compatible Printer Interface connector pin
assignments

Signal Name PC Connector Pins Printer Connector Pins Source
Signal Return Signal Return

/Strobe 1 18 1 19 Host
Data 1 2 18 2 20 Host
Data 2 3 19 3 21 Host
Data 3 4 19 4 22 Host
Data 4 5 20 5 23 Host
Data 5 6 20 6 24 Host
Data 6 7 21 7 25 Host
Data 7 8 21 8 26 Host
Data 8 9 22 9 27 Host
/Ack 10 22 10 28 Printer
Busy 11 24 11 29 Printer

Paper Empty 12 12 Printer
Select (On-line) 13 13 Printer

/AutoFdXT* 14 14 Host
/Fault 15 32 Printer

/Init (/Reset) 16 25 31 30 Host
/Select In* 17 23 36 33* Host

Chassis Ground 17
Not Used* N/C 15

Signal Ground N/C 16
Not Used* N/C 18
Not Used* N/C 34

+5 V* N/C 35 Printer
NOTES
1 -- 1 A leading slash (e.g., “/Name”) denotes an active low signal.
2 -- 2 Chassis ground connection is made to the host-connector shroud via a cable shield.
3 -- 3Signals denoted with “*” are redefined from the classic Centronics interface.
4 -- 4Pin numbers denoted “N/C” indicate no connection to the host connector.
5 -- 5Signal names in parentheses [e.g., Select (On-line)] are commonly used synonyms for these signal

names.

C.5.2 Signal definitions

This subclause provides definitions for signals added or redefined by the PC Parallel and PC-Compatible
Printer Interfaces. Except as specified here, all other signals remain the same as the Centronics Standard
Parallel Interface as defined in C.3.2.

Definitions of host- and printer-generated signals are given separately below.
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C.5.3.1 Host-generated signals

This subclause lists changes and differences for host-generated signals. When both host and printer connec-
tors use the same pin number, only one pin number is given.

The PC Parallel and PC-Compatible Printer Interfaces introduced two additional host-generated control sig-
nals, AutoFdXT and Select In. These signals, although seldom used, are described below.

A AutoFdXT
(Pin 14)

This line, when low, causes the paper to be automatically fed one line upon receipt
and execution of the Carriage Return control code.

B. Init
(Host pins 16/25,
Printer pins 31/30)

This line performs the same “hard reset” function as the classic Centronics sig nal
Input Prime. However, the IBM/Epson specification added a minimum pulse
width requirement of 50 µs.

C. Select In
(Host pins 17/23,
Printer pins 36/33)

This line, when low, enables data input into the printer. When supported by the
printer, details vary with the implementation. In some cases, this line acts as a
simple active low enable line. In others, this signal enables ASCII DC1/DC3
control codes as printer Select/De-select commands to enable or disable data
input. Note that printer pin 33 has been redefined as a signal ground return lead
for this signal.

C.5.3.2 Printer-generated signals

This subclause lists changes and differences for printer-generated signals, even though many of these
signals were, technically, listed as “No Connection” for PC hosts by many manufacturers. Accordingly, pin
numbers given are for the printer connector only.

A. Not Used
(Pin 15)

Not used by the PC-Compatible Printer Interface. Not connected to the PC Par
allel Interface. (The Centronics Standard Parallel Interface defined this lead as the
External Oscillator signal.)

B. Not Used
(Pin 18)

Not used by the PC-Compatible Printer Interface. Not connected to the PC Par
allel Interface. (The Centronics Standard Parallel Interface defined this lead as the
+5 V signal.)

C. Signal Ground
(Pin 33)

Signal ground connection, added for the return lead of the Select In signal. (The
Centronics Standard Parallel Interface defined this lead as the Light Detect signal.)

D. Not Used
(Pin 34)

Not used by the PC-Compatible Printer Interface. Not connected to the PC Par
allel Interface. (The Centronics Standard Parallel Interface defined this lead as the
Line Count signal.)

E. +5 V
(Pin 35)

This high going signal provides a positive dc level indication that the printer is
connected and powered on. It is a new signal definition; however, it is not con
nected to the PC Parallel Interface. (The Centronics Standard Parallel Interface
defined this lead as the Line Count Return signal.)
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C.5.3 Electrical specifications

C.5.3.1 Voltage levels

The interface circuitry for both the PC Parallel and PC-Compatible Printer Interfaces typically used 74LSxx
Series logic (5 V TTL) for both input and output signals, although 7400 Series logic was occasionally used
to drive some control signals.

C.5.3.2 Logic levels

The PC Parallel and PC-Compatible Printer Interfaces used the same logic levels (TTL 5 V nominal) and
signal definitions as the Centronics Standard Parallel Interface.

C.5.3.3 Current requirements

Input current requirements have not been published for either the PC Parallel or the PC-Compatible Printer
Interfaces. However, as these interfaces typically used 74LSxx Series logic and larger pull-up resistor val-
ues, required input currents can be expected to somewhat less than that needed for the Centronics Standard
Parallel Interface. The PC-Compatible Printer Interface input requirements can also be estimated from the
published PC interface output current specifications.

The output current provided by the original (Monochrome Adapter) PC interface did not, strictly speaking,
meet Centronics interface requirements. In particular, the open collector drivers provided for the control
signals were limited to sinking only 7 mA at 0.8 V.10   However, later parallel interface adapters (such as the
Serial/Parallel Adapter provided for the PC/AT computer), provided additional sink current that corrected
this problem.

Table C3 lists the output current provided by both the original Monochrome Adapter and some later parallel
interfaces. This table also includes values for local pull-up resistors provided to source the current for the
open collector circuits.

Table C 3 -- PC Parallel Interface output current

Signal Circuit Pull-up Source PC Sink PC/AT Sink
Control Open Collector 4.7 kΩ — 7 mA at 0.8 V 16 mA at 0.4 V
Data1Data8 74LS24x 2.6 mA at 2.4 V 24 mA at 2.4 V 24 mA at 2.4 V
NOTES
1 -- Control signals include Strobe, Init, AutoFdXT, and Select In.
2 -- The 4.7 kΩ pull-up resistor is sufficient to source 0.55 mA at 2.4 V.
3 -- 74LS24x indicates a member of the SN74LS240 Series of line driver circuits.

C.5.3.4 Line termination

                                                     
10This initial unfortunate oversight is largely responsible for the 2 m cable length restriction often associated with the PC parallel
interface.
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The PC-Compatible Printer Interface typically terminated both input data lines (Data1–Data8) and control
signals (Strobe, Init, AutoFdXT, and Select In) with 1 kΩ to +5 V. However, some implementations have
terminated data lines with values as high as 11 kΩ, and control signals with values as high as 3.3 kΩ.

The PC Parallel Interface provided no explicit line termination for input status signals. That is, these signals
(Ack, Busy, Paper Empty, Select, and Fault) are connected directly to the inputs of 74LSxx Series logic,
with no external termination network.

C.5.4 Interface timing

In general, the data transfer sequence is the same as the Centronics Standard Parallel Interface. However,
there were three significant changes in the PC-Compatible Printer Interface.

a)  The Acknowledge/Busy timing relationship was modified such that the Acknowledge pulse was
generated within the Busy active period. That is, the Acknowledge pulse ended at the same time that
Busy ended. This sequence is illustrated in figure C2.

b)  Minimum strobe pulse width, and data setup and hold times, were reduced to 0.5 µs.
c)  Minimum Init pulse width to reset the printer was defined to be 50 µs.

C.5.3.1 PC-Compatible Printer Interface timing

Data transfer timing is shown in figure C2. Applicable pulse widths, setup, and hold times are listed in this
figure.

.

Figure C 2 -- PC-Compatible Printer Interface timing

C.5.3.2 PC Parallel Interface timing

The PC Parallel Interface specified a minimum input Acknowledge pulse width of 0.5 µs at the PC interface
connector.

Output data setup and hold times, as well as Strobe pulse width, are not guaranteed. This is primarily due to
the lack of hardware support for these signals. Instead, each signal is under direct software control, and soft-
ware instructions are responsible for writing the output data, waiting to assure setup, explicitly setting
Strobe low, waiting for the pulse width, and then explicitly setting Strobe high. While ROM BIOS support
is provided for these actions, nothing prevents application software from taking direct control of these
signals. However, due to both software latency and programming allowances, output timing is typically
provided with generous margins.
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C.5 Enhanced and bidirectional parallel printer interface
Later PCs, including most microchannel machines introduced in 1987 and later, provided additional
enhancements to the PC Parallel Interface.11   This interface, while completely backward-compatible with
the PC Parallel Interface, added bidirectional drivers to the eight data lines, as well as provisions for
reversing the directions of nominal output (printer control) signals. This new interface, however, used the
same interface connector, pinout, and signals as the earlier PC interface.

These new computers provided three variations of the enhanced parallel interface, typically denoted PS/2
Type 1, Type 2, and Type 3. Although these three types differed primarily by internal system-related
enhancements, the Type 2 and Type 3 interfaces provided hardware support for setup time and Strobe pulse
generation.

                                                     
11These specifications are taken from the IBM Personal System/2 Hardware Interface Technical Reference—Common Interface Man-
ual, Part Number S84F9809.

C.5.1 Interface connectors and pin assignments

The Enhanced (Types 1, 2, and 3) interface connectors and pin assignments are identical to the PC Parallel
Interface.

C.5.2 Signal definitions

The Enhanced interface signals are identical to the PC Parallel Interface, when configured for printer
output. While the interface signals can be redefined for bidirectional data transfer, these redefinitions are
unique to proprietary software and are beyond the scope of this annex.

C.5.3 Electrical specifications

C.5.3.1 Voltage and logic levels

The Enhanced interfaces support the same voltage and logic levels as the PC Parallel Interface. These cir-
cuits are 5 V TTL, typically 74LSxx Series or equivalent logic.

C.5.3.2 Line termination and current requirements

Line terminations for the Enhanced interfaces have varied with the exact implementation. While output cur-
rent values are relatively consistent, input current requirements vary, typically with variations in the input
termination. Generally, these values remain compatible with both the Centronics Standard Parallel Interface
and the PC-Compatible Printer Interface.
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Figure C 3 -- Enhanced (Type 1, 2, and 3) interface circuits

Figure C3 shows the general arrangement of drivers, receivers, and line termination components for this
interface. Signals that are input only do not include the driver circuit. Also, some signals do not provide all
termination components, while others are present only in some implementations. For example, the series
resistor (R2) is present only for Data and Strobe signals.

Table C4 identifies termination components for each signal, as well as driver/receiver circuitry and output
and input characteristics. Where components have varied with the implementation, a range of values is
given. Termination components that are not included in all implementations are also identified.
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Table C 4  -- Enhanced (Type 1, 2, and 3) interface output current

Signal
Name

Dir
(I/O)

Termination Output Characteristics Input Characteristics

R1 R2 C1 Driver IOH VOH IOL VO L Receiver IIH VI H VIL

Data1
Data8

I/O 2k* 33 2200* 74LS24x 2.6 2.4 24 0.5 74LS24x 0.04 2 0.8

Strobe I/O 2k - 4.7k 33 2200* O.C. 20 0.5 74LSxx 0.04 2 0.8
Init I/O 2k - 4.7k 2200* O.C. 20 0.5 74LSxx 0.04 2 0.8

Auto-
FeedXT

I/O 2k - 4.7k 2200* O.C. 20 0.5 74LSxx 0.04 2 0.8

Select In I/O 2k - 4.7k 2200* O.C. 20 0.5 74LSxx 0.04 2 0.8
Ack I 1k - 10k* 68 -

2200*
74LSxx 0.04 2 0.8

Busy I 1k - 10k* 68 -
2200*

74LSxx 0.04 2 0.8

Paper
Empty

I 1k - 10k* 68 -
2200*

74LSxx 0.04 2 0.8

Select I 1k - 10k* 68 -
2200*

74LSxx 0.04 2 0.8

Fault I 1k - 10k* 68 -
2200*

74LSxx 0.04 2 0.8

NOTES:
1 -- Units: resistors are in ohms; capacitors are in picofarads; currents are in milliamperes; voltages are in volts.
2 -- Drivers labeled “O.C.” are open collector. High output voltage and current depend on the pull-up resistor.
3 -- Termination values marked with asterisk (*) indicate that these components are not present in some implementations. This

is equivalent to “or none.”
4 -- Termination values or driver types left blank indicate that these components are not present in any implementation.

C.5.4 Interface timing

Enhanced interface timing is essentially the same as the PC interface. In particular, since direct software
control of the output signals was retained, output timing cannot be guaranteed for the reasons outlined in
C.4. However, the Type 2 and Type 3 interfaces also provide the ability to enable hardware data setup and
strobe pulse generation.

When enabled, the Type 2 and Type 3 interfaces generate data transfer timings automatically. These inter-
faces provide data setup times of 1.0 µs ± 0.25 µs, and a Strobe pulse width of 1.0 µs ± 0.25 µs.
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C.6 Printer interface variations
Printer variations of the basic Centronics interface flourished in the decade following the introduction of the
first MS-DOS compatible PC. Almost all of these printers claimed Centronics compatibility, but in many
cases this was not strictly true. Typically, the “core” interface signals and basic handshaking remained the
same, but signal timing and edge relations often differed. Most commonly, printer variations involved Busy
signal timing, both at the leading edge (with respect to Strobe) and the trailing edge (with respect to Ack).12

These variations resulted from the lack of an industry standard specification for the interface. Without an
authoritative specification, many printer vendors were forced to rely on the meager and inadequate docu-
mentation published in user manuals. As the target market was often the rapidly expanding PC base, many
printers were designed by studying how PC software used the interface, rather than by matching Centronics
printer operation. Accordingly, while timing details varied widely, these printers typically worked well with
most PCs. However, printers from different manufacturers were seldom “plug-compatible,” and often were
not “plug-compatible” with Centronics, even when Centronics interface compatibility was claimed.

The most common variations involved Busy signal timing. These included both when the Busy signal was
asserted and when it was released. During data transfer, printers assert Busy upon receipt of a Strobe pulse
and release Busy when an Ack pulse is issued. The relationship of Busy to Strobe generally occurred in two
ways:

—  Busy-while-Strobe
—  Busy-after-Strobe

However, the relationship of Busy to Ack generally occurred in three ways:

—  Ack-in-Busy
—  Ack-after-Busy
—  Ack-while-Busy

Of these Busy timing variants, Centronics printers used only Busy-after-Strobe and Ack-after-Busy. Periph-
erals supporting IEEE 1284 Compatibility Mode use the Busy-while-Strobe and Ack-in-Busy conventions.

Each of these sets of Busy timing relationships are discussed in the following subclauses.

C.5.1 Strobe-to-Busy timing variations

There are two Strobe-to-Busy timing variations in general usage. These two variations typically differ in
which edge of the Strobe pulse is considered to be the “active” edge. The common names for these timing
variations arise from the appearance of the wave forms. For Busy-while-Strobe timing, the falling (or lead-
ing) edge of the Strobe pulse is used to activate Busy. Thus, Busy is usually asserted while Strobe is
asserted. For Busy-after-Strobe timing, Busy is activated by the rising (or trailing) edge of Strobe. Here,
Busy is asserted only after the Strobe pulse is complete.

                                                     
12The edge relationships of the other printer status signals (Online, Paper Empty, and Fault) have also varied widely, both among
these signals and with respect to the Busy signal. These status signals, however, do not directly participate in the data transfer
process, and it was generally well known to host software that they could change state asynchronously. Accordingly, although almost
every possible combination of edge relations among these signals have been used, these typically had no effect on interface operation
except in the rare cases where the edge-to-edge differences have become large).
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These two timing variations are contrasted in the following figures. Busy-while-Strobe is shown in figure
C4, and Busy-after-Strobe is shown in figure C5. In both cases, the delay from the active edge of Strobe to
the assertion of Busy is indicated by the time “t.” Typical values for Strobe edge to Busy active delays are
listed in table C5.

Figure C 4 -- Busy-while-Strobe timing

Figure C 5 -- Busy-after-Strobe timing

Table C 5 -- Typical Strobe-to-Busy delay timings

Timing Variant Minimum Maximum
Busy-while-Strobe 0 µS 1.0 µS
Busy-after-Strobe 0 µS 1.5 µS

These timing values illustrate the dangers of the occasional but somewhat hazardous use of Busy for data
flow control.13   While Busy is asserted upon receipt of a Strobe pulse, this may not happen immediately.
(In some cases, assertion of Busy may be deferred indefinitely, such as the second Busy-after-Strobe variant
listed in table C5.) Host systems that rely solely on the state of Busy to determine when the next byte can be
sent risk losing data. This can occur when the host writes a byte to the interface, looks at Busy and finds it
not set, then writes the next byte. If, under these conditions, the printer has not yet set Busy for the first
byte, the second data byte will be lost.

The Busy-while-Strobe variant attempts to address this problem by asserting Busy upon receipt of the lead-
ing edge of Strobe. While this reduces the probability of encountering problems, it does not eliminate the
race condition hazard introduced by hosts relying solely on the state of Busy for flow control. The original
Centronics interface was designed around the concept of Strobe/Ack handshaking, and this remains the best
method to ensure data transfer integrity.

                                                     
13The original Centronics specification cautioned that only Ack should be used to verify the receipt of data (see C.3.2.2.).
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C.5.2 Busy-to-Ack Timing Variations

There are three Busy-to-Ack timing variations in general usage. These variations differ in whether the Ack
pulse is issued before or after the Busy signal is deasserted, or if Busy is deasserted while the Ack pulse is
active. As in the previous clause, the common names for these timing variations arise from the appearance
of the wave forms. The common names of the three variants are

Ack-in-Busy The Ack pulse is sent before Busy is deasserted (the Ack occurs inside the Busy
signal).

Ack-after-Busy The Busy signal is deasserted before the Ack pulse is sent (the Ack occurs after
the Busy signal).

Ack-while-Busy The Ack pulse begins while Busy is active, but ends after Busy has been deas
serted (the Busy signal changes while Ack is active).

These timing variations are compared in figure C6. Typical timing values for the associated Ack and Busy
edges are listed in table C6.

Figure C 6 -- Busy/Ack timing relations

Table C 6 -- Typical Busy/Ack timings

Legend Minimum Typical Maximum
Ack-in-Busy
Ack high to Busy low a 0 µS 2.5 µS  --
Ack-after-Busy
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Busy low to Ack low b 2.5 µS  -- 10 µS
Ack-while-Busy
Ack low to Busy low c   -- 5 µS   --
Busy low to Ack high d   -- 7 µS   --

These timing variations generally have little effect upon the integrity of the data transfer, as both signals are
controlled by the printer. Typically, regardless of the method used to terminate the transfer cycle, the printer
ensures that internal data transfer has been completed before initiating the end-of-cycle process. However,
host systems should exercise some caution before beginning the next data transfer cycle, due to these timing
variations.

In particular, it is important to recall that the Busy signal can be asserted under a variety of conditions, not
just during the data transfer cycle. Host systems that rely on Ack to determine the end of the data transfer
cycle should ensure that Busy has been cleared before strobing the next byte. This is particularly important
when connected to printers that use the Ack-in-Busy and Ack-while-Busy timing variants. As shown in table
C6, these variants allow the Busy signal to be prolonged indefinitely, even after the Ack pulse has been
initiated.
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