

8 & 16-bit CISC Architectures Technical Product Overview

H8/H8S Technical Product Overview

H8 Family Roadmap Over \$1B in Sales

HITACHI

H8 Performance Factors

Integration, Low Power, and Performance

Memory and Peripheral Integration

- Large blocks of on-chip memory: Flash, OTP, ROM 128KB

• Abundant on-chip peripherals: LCD, I²C, SCI, Timers, A/D, DRAM Ctrl

Low Power Design Techniques and Features

- Up to 7 different low power modes provided
- Peripheral "modular" power down
- Low voltage operation down to 2.2V
- Static design (H8S) and 32KHz clock option

Leading *Performance* in the 8/16-bit MCU Class

• Min. 50nsec instruction execution time @ 20 MHz operation

Preserves Your S/W Investment

- Excellent C language support with a register-based, load/store architecture
- A wide range of price/performance solutions offering an easy migration path from low-end 8-bit to high-end 16-bit solutions **UPDATE DATE: 5/12/98**

Hitachi 8 & 16 Bit Micro Overview

Family /	Architecture	<u>MIPS</u>	Key Features
H8/300L	8 bit	1.0 MIP	 Integrated LCD/Vacuum Fluorescent Drivers 32 KHz sub-clock with 7 low-power modes A/D, watchdog timer, PWM, SCI Up to 8 MHz operation 2.2-5.5V
H8/300	8 bit	2.0 MIPS	 64Kbytes address space host interface/keyboard control functions I²C bus interface A/D, watchdog timer, PWM, SCI Up to 16 MHz operation 2.7-5.5V
H8/300H	16 bit	4.0 MIPS	 16MB of linear address space DMAC: Direct Memory Access Controller A/D, D/A, WDT, ITU, TPC, SCI, Smart Card direct interface to DRAM (RAS, CAS, CS) up to 18 MHz operation 2.7-5.5V
WDT = watchdog timer	16 bit TPC = timing pattern co	10.0 MIPS	 static core with 32 KHz sub-clock Burst ROM, fast page DRAM support DMAC, A/D, D/A, TPU, PPG, SCI, WDT multiply and accumulate unit: 16x16+42 bit up to 20 MHz operation
ITU = integrated timing un TPU = timer pulse unit	it SCI = serial communica PPG = programmable p	ntion interface battern generator	• 2.7-5.5V UPDATE DATE: 5/12/98

Topics

H8/H8S CPU Architecture

- Register Structure
- Addressing Modes
- Instruction Set
- Processing States
- Access Timing
- Operation Modes
- Power Down Modes

On-chip Memory General-purpose I/Os

8-bit CISC Peripherals

- H8/300L and H8/300
- Interrupt Processing

16-bit CISC Peripherals

- H8/300H and H8S
- Interrupt Processing

HITACHI

H8/H8S Technical Product Overview

H8/H8S CPU

UPDATE DATE: 5/12/98

CPU Structure

General purpose registers

- 8, 16, or 32-bit length
- No restrictions on usage
- Used as accumulator, index register, address pointer, or data storage

Load/store architecture

- Register-to-register operations
- Supports high level (C) efficient programming

PC = Program Counter CCR = Condition Code Register EXR = Extended Control Register MAC = Multiply-Accumulate Register SP = Stack Pointer

H8/300L & H8/300

Data Formats in Memory

Data Type	Address	Data Format
1-bit Data	Address "A"	7 6 5 4 3 2 1 0
Byte Data	Address "B"	$\begin{bmatrix} 7 & 0 \\ MSB & LSB \end{bmatrix}$
Word Data	Address "C"	MSB High Byte
	Address "C+1"	Low Byte LSB
		7 0
Longword Data	Address "D"	MSB High Byte
	Address "D+1"	H8/300H and H8S
	Address "D+2"	ONLY
	Address "D+3"	Low Byte LSB

UPDATE DATE: 5/12/98

Addressing Modes

Register direct Register indirect Register indirect with displacement Register indirect with post-increment Register indirect with pre-decrement Absolute address Immediate Program counter relative Memory indirect

Register Direct

- Operand is general register contents.
- e.g. MOV.W R0,R1

Register Indirect

- Effective address of operand given by contents of general register in the instruction code.
- e.g. MOV.B R0L,@R0H

Register Indirect with Displacement

- Effective operand address calculated by adding a displacement to a general register contents, both contained in the instruction code
- e.g. MOV.W @(h'7FFF,ER0), R1
- Displacement size16-bit for H8/300L-300, 16/24-bit for H8/300H, 16/32-bit for H8S/2000

Register Indirect with Post-Increment

- Effective address of operand is in the contents of a general register specified in the instruction code. After the operand is accessed, the specified general register is incremented by 1,2,or 4
- e.g. MOV.L @ER0+, ER1

Register Indirect with Pre-Decrement

- Effective address of operand is calculated by decrementing 1,2,or 4 from the contents of a general register specified in the instruction code
- e.g. MOV.W R0, @-ER1

Absolute Address

- Effective address of operand is in the instruction code
- e.g. MOV.W @h'7D00, R0

Immediate

- Operand is immediate data
- e.g. MOV.W #h'FFE0, R0

Program-Counter Relative

• Effective address of operand is in the instruction code to which the contents of the PC are added. e.g. BSR h'7F

Memory Indirect

• Effective address of operand is contained in a memory location pointed from the instruction code. e.g. JMP @@h'E5

Instruction set

Types of Operations	H8/300L	added to H8/300	added to H8/300H	added to H8S/2000
Data transfer	MOV, POP, PUSH	MOVFPE, MOVTPE		LDM, STM
Arithmetic Operations	ADD, SUB, ADDX, SUBX, INC, DEC, ADDS, SUBS, DAA, DAS, MULXU, DIVXU, CMP, NEG		MULXS, DIVXS, EXTS, EXTU	TAS MAC, LDMAC, STMAC, CLRMAC*
Logical Operations	AND, OR, XOR, NOT			
Shift	SHAL, SHAR, SHLL, SHLR, ROTL, ROTR, ROTXL, ROTXR		Word &	Word &
Bit manipulation	BSET, BCLR, BNOT, BTST, BAND, BIAND, BOR, BIOR, BXOR, BIXOR, BLD, BILD, BST, BIST		long word support	long word support
Branch	Bcc, JMP, BSR, JSR, RTS (Bcc = conditional branch on cond. "cc")			
System control	RTE, SLEEP, LDC, STC, ANDC, ORC, XORC, NOP		TRAPA (software interrupt)	
Block data transfer	EEPMOV			

* Multiply And Accumulate (MAC) instructions on H8S/26XX family w/ hardware MAC unit only

Upward code compatibility

Min. Instruction Execution Time

Options	H8/300L	H8/300	H8/300H	H8S		
Internal memory	2 states	2 states	2 states	1 state		
External memory	N/A	3 states	2 states	2 states		
Max. frequency	8MHz	16MHz	18MHz	20MHz		
Min. exec. time	250ns	125ns	110ns	50ns		
% of instructions	50%					

CPU Processing States

Program Execution

• Program instructions executed in sequence by CPU

Exception Handling

• Transient state where normal processing flow is changed in response to an exception

Bus-Release

• Bus mastership relinquished by CPU

Power Down

• CPU and/or peripheral operation stopped

Data Access Timings

H8/300L and H8/300

- Fixed as in the table below
- Certain H8/300 devices allow wait-state insertion

H8/300H and H8S

• adjustable in the Bus Controller

	H8/300L		H8/300		H8/300H		H8S/2000	
Options	Bus width	Min # cycles						
On-chip memory	16-bit	2	16-bit	2	16-bit	2	16-bit	1
On-chip peripherals	8-bit	2 or 3	8-bit	3	8/16-bit	3	8/16-bit	2
External memory	N/A	N/A	8-bit	31	16-bit	2	16-bit	2

1. Word transfers are executed in 6 cycles.

Operating Modes

Single-chip Modes

• All address space mapped within the MCU

Expanded Modes

• Address space mapped externally and within the MCU

	H8/300L		H8/300		H8/300H		H8S	
Mode features	Single-chip	Expanded	Single-chip	Expanded	Single-chip	Expanded	Single-chip	Expanded
Max. addressability	64Kbytes*	N/A	64Kbytes*	64Kbytes	1Mbyte*	16Mbytes	16Mbytes*	16Mbytes
Max. # of modes	1	N/A	1	2	1	6	2	5

* actual on-chip memory is smaller

Power Down Modes

Sleep Mode

• Clock runs, CPU stops, but CPU/Peripheral registers held

Software Standby

• Clock stops, only CPU registers and RAM contents held

Hardware Standby

- Clock stops, only RAM contents held
- Not available on H8/300L

Medium Speed

- Bus master operates on slower clock, peripherals operate normally
- On all families except the H8/300

Subsleep/Watch

- CPU halts, only timer channel(s) operate on the 32KHz subclock
- Only on H8/300L and H8S

HITACHI

Power Down Modes (cont'd.)

Subactive

- 32KHz subclock operation for CPU and a timer channel
- Only on H8/300L and H8S

Module Standby

- Halting one or several peripherals
- Not available on H8/300L-300

Power Down Modes (cont'd.) Typical Power Consumption at 3V

MODES	H8/300L		H8/300		H8/300H		H8S	
WODE5	typ	max	typ	max	typ	max	typ	max
Sleep mode	6mW	9mW	27mW	48mW	36mW	72mW	27mW	92mW
Software standby mode	30nW	15µW	30nW	15µW	30nW	15µW	30nW	15µW
Hardware standby mode	-	-	30nW	15µW	30nW	15µW	30nW	15µW
Watch mode (32KHz subclock oscillator)	N/A	18µW	-	-	-	-	N/A	N/A
Subsleep mode	15µW	30µW	-	-	-	-	N/A	N/A
Medium speed active mode	3mW	N/A	-	-	-	-	N/A	N/A
Subactive mode (32KHz subclock oscillator)	30µW	60µW	-	-	-	-	N/A	N/A
Module standby/stop mode	-	-	_	-	21mW	42mW	N/A	N/A

- **1.** The measurements above are for the following specific devices: H8/3644 (300L), H8/3437 (300), H8/3048 (300H), and H8S/2245 (H8S).
- 2. Power dissipation numbers are measured at the MAXIMUM operating frequency at 3V.
- **3.** H8/300H and H8S also support 'CLOCK GEARING-DOWN'' software programmable clock division.
- **4.** N/A: data not available
- 5. : not applicable

On-chip Memory

High density ROM, Flash, RAM

• Over 100 memory configuration options available

Maximizes performance

• On-chip memory access is FASTEST

Minimizes system power consumption and board space

H8 Family	Flash	OTP	Mask ROM	Romless	RAM
H8/300L	32KB	60KB	60KB	N/A	2KB
H8/300	60KB	60KB	60KB	✓	4KB
H8/300H	128KB	256KB	256KB	✓	4KB
H8S	128KB	128KB	128KB	\checkmark	8KB

Maximum Available Densities

Flash vs. OTPs - Advantages

Single cycle access to internal memory

Lower system power

- less bus state controller utilization
- single chip powered vs. two

Lower development cost

• Flash can be programmed/erased instead of discarding multiple OTPs

Lower manufacturing cost

• scrapping of OTPs due to code changes can be eliminated

Initial flexibility during manufacturing

• a single end product can be "personalized" at final assembly or test for different customers or end-markets

After-shipment software upgrades

• end product can be modified repeatedly in the field

HITACHI

H8/H8S Flash Roadmap

Flash devices

Flash density

Flash General Features

Programming voltage

- 0.8µ devices require 12V programming voltage
- 0.5µ devices require 5V programming voltage NOW AVAILABLE

Efficient block programming and erasing

• Memory area partitioned in block sizes from 512 bytes up to 32Kbytes

Fast programming and erasing

• 50µs per byte programming and 1sec. total erasure time

100 reprogramming cycles guaranteed

A variety of programming channels

• Via SCI, I²C, IrDA, or parallel interface

Flash Operation-Control Modes

The steps involved during the pre-programming and programming processes

Program mode

• Writes data to the flash memory

Program verify mode

• Data in flash is verified

Erase mode

• Erase block(s) of flash

Erase verify mode

• Check flash is erased

Prewrite verify mode

• Verifies all flash cells are "0"

Flash Programming Process

Flash Memory Program/Erase Operating Mode State Transition Diagram

* = New devices have single-voltage (5V) flash - no separate Vpp programming voltage necessary UPDATE DATE: 5/12/98

Flash Programming Modes

Methods to load the application code into the flash memory

PROM Mode

• Uses programming adapter in PROM programmer

BOOTSTRAP Mode

• Serially programs from host using built-in bootstrap loader via SCI

User Program Mode

• Device programs itself according to user application

PROM Mode

Will program on an EPROM programmer using programming socket adapter*

Electronic Erase

Fastest way for production programming

- 49 sec for H8/3334Y on Data I/O Unisite
- Sub 10 seconds possible on some programmers

Security bit function

Require specific device algorithm - most programmers support Flash devices

^{*} available from Hitachi, Data I/O, or BP Microsystems

HITACHI

Bootstrap Mode

Features

- Allows a host processor to download any application via SCI to RAM which will then execute
- Great for in-circuit programming
- Great for system test and similar applications
- Flash is erased before download (and verified to be erased)
- Flash may be reprogrammed with security bit set

No Pre-Programmed Boot Strap Required - Already Coded

HITACHI

Bootstrap Mode (cont'd.)

User Program mode

- Allows just flash blocks to be programmed rather than complete Flash memory (Boot Mode)
- Allows the programming of the flash under the user kernel control
- Allows the download of new program data by a method defined by user, e.g. parallel port, I²C, or IrDA (not just the SCI)
- The user has complete control of the programming process
- Security is up to the users application

HITACHI

User Program Mode Example

- H8-3337 FLASH Device
- USER Software kernel linked with users' code
- Require to reprogram 512 byte block with new calibration table
- New calibration table loaded via I²C port from host

General-Purpose I/Os

Memory-mapped and accessed via dedicated data registers H8/300L and H8/300

- Up to 74 I/O lines
- Up to 16 capable of driving LEDs

H8/300H and H8S

- Up to 87 I/O lines
- Up to 40 capable of driving LEDs

Multiplexed with various module functions

TTL load and Darlington pair driving capability

8-bit CISC Peripheral Modules

Modules	H8/300L	H8/300
16-bit Timer(s)	✓	~
8-bit Timer(s)	\checkmark	\checkmark
PWM(s)	\checkmark	\checkmark
Watchdog Timer	\checkmark	\checkmark
Serial Communication Interface	\checkmark	\checkmark
I ² C Interface		\checkmark
A/D Converter	\checkmark	\checkmark
D/A Converter		\checkmark
LCD Controller	\checkmark	
Host Interface Controller		\checkmark

16-bit Free Running Timer (FRT)

One channel (H8/3318 has 2 channels) Two independent comparators per channel

• Up to 2 simultaneous waveforms per channel

Four input-capture lines (H8/3318 has 5)

- Current count can be captured on rising/falling edge of input signal
- Two channels can be used as buffers for the other 2 channels

Counter clear option - upon compare-match Selection of 4 clock options

• 3 internal and 1 external

Interrupt-generating capability

• Upon compare-match, input-capture, and/or overflow

16-bit FRT Block Diagram H8/3437 example

8-bit Timers

Type One (on H8/300L only)

- One channel
- Operates as an interval timer interrupt generated upon overflow
- Provides real-time clock base operation
 - uses 32KHz subclock as count base for 4 distinct overflow periods
 - interrupt generated upon overflow
- Can output 8 clock signals 4 derived from the 32KHz subclock, and 4 derived from the system clock

Type Two (on H8/300L only)

- One channel
- Operates as an interval timer interrupt generated upon overflow
- Provides software-controlled auto-reload function new timer value loaded from load value register
- Timer clock sources 7 internal and 1 external

8-bit Timers (cont'd.)

Type Three (on both H8/300L and H8/300)

- Up to 2 channels
- Two independent comparators per channel up to 2 PWM outputs controlled by compare-matches
- Counter clear options upon compare-match or external reset
- Selection of 7 clock options 6 internal and 1 external
- Interrupt-generating capability compare-match and/or overflow

H8/H8S Technical Product Overview

HITACHI

8-bit Timer Block Diagram Type 3 - H8/3437 one channel example

TCR: Timer control register (8 bits) TCSR: Timer control status register (8 bits) TCORA: Time constant register A (8 bits) TCORB: Time constant register B (8 bits) TCNT: Timer counter

PWM Timers

H8/300L

- Provides a PWM output with a variable dutycycle
- Offers 14-bit resolution
- Can be used as D/A converter with external low-pass filter

H8/300

- Provides 2 independent PWM outputs (except 16 for the H8/3217 and H8/3318 only)
 - generated by comparison between a single time base and up to 16 independent comparators
- Selection of up to 8 clock sources (internal or external)
- Signal control features
 - Direct or inverted PWM polarity output
 - Software enable/disable control

PWM Block Diagram H8/3217 example

Watchdog Timer

Monitors system operation

- By resetting the CPU
- By generating an NMI (H8/300 only)

Selection of 8 clock sources

8-bit resolution

Can also operate as an interval timer

• Generates an interrupt at each overflow

Watchdog Timer Block Diagram H8/3437 example

Serial Communication Interface (SCI)

Type 1 (only on H8/300L devices)

- One channel operating synchronously ONLY
 - 8 or 16-bit data length
 - supports SSB (synchronized serial bus) communication with multiple devices on the H8/3644
 - interrupt generating capability upon end of transfer
 - selectable internal or external clock sources

Type 2 (only on some H8/300L devices)

- One channel operating synchronously ONLY
 - automatic transfer of up to 32 bytes of data
 - » transfer can be triggered externally
 - » strobe pulse can be output per each transfer
 - » delays can be inserted between each transfer
 - selectable internal or external clock sources
 - interrupt generating capability end of transfer or error

SCI (cont'd.)

Type 3 (all except some H8/300L devices)

- Up to 2 channels (one channel on H8/300L)
- Asynchronous operation
 - adheres to standard asynchronous communication formats
 - error-checking and break detection capabilities
 - max. 156K bits/sec. (H8/300L), max. 500Kbits/sec. (H8/300)
- Synchronous operation
 - 8-bit data length
 - max. 2.5Mbits/sec. (H8/300L), max. 4Mbits/sec. (H8/300)
- Full duplex communication
- Built-in baud rate generator selectable bit rates
- Selectable clock sources internal or external
- Interrupts upon end of transmission/receive and/or communication error
- Multiprocessor function (H8/300 only)
 - serial communication with multiple devices

H8/H8S Technical Product Overview

HITACHI

SCI Type 3 Block Diagram H8/3437 - one channel example

I²C Interface

Provided on some H8/300 devices only

Subset of the Philips I²C serial bus interface protocol

Up to 2 channels of 2-wire serial link between H8 and peripheral devices

• Comprises a single data line and a clock line

Operation features

- Master/slave receive and transmit mode support
- Automatic generation of start/stop conditions
- Wait state insertion during acknowledgement mode

Selection of 8 internal clock sources (master mode)

Three interrupt sources

- Data transfer end
- Slave address match (in slave receive mode)
- Bus arbitration lost (in master transmit mode)

I²C Block Diagram H8/3437 example

A/D Converter

Up to twelve separate input channels (H8/38XX, else eight) Up to 10-bit resolution (8-bit on H8/300L)

Sample-and-hold function

Up to 2 conversion modes

- Single mode: one channel A/D conversion
- Scan mode: up to 4 channel sequential conversion (H8/300 ONLY)

Conversion speed

• Max. 124µs, min. 12.4µs (H8/300L), max. 8.4µs (H8/300)

Trigger mechanisms

• By software or by dedicated input pin

Interrupt generating capability

• Upon end of conversion

Selectable analog conversion voltage range (H8/300 only)

A/D Block Diagram H8/3437 example

D/A Converter

Only on H8/300 Two independent channels 8-bit resolution Conversion time - max 10ms Selectable output voltage range

Liquid Crystal Display (LCD) Controller

Only on some H8/300L (H8/38xx)

Up to 40 segment on-chip display driving capability

• Up to 512 segments when used with external driver

LCD RAM capacity of 512 bits (8 bits x 64 bytes)

• Word access capacity

Internal voltage divider

• Provided to LCD power supply

Unused common lines can be used to boost common output

Displays in all operation modes (except standby)

Host Interface Controller (HIF)

Provided on some H8/300 (IKAP^{*}) devices only

Dual-channel 8-bit parallel interface between CPU and host processor (e.g. Intel 80x86 devices)

• H8 is slaved to the host processor

Communication protocol consists of

- Control signals from the host processor to the H8 CPU (e.g. chip selects, read/write signals, address select)
- Output signals from H8 CPU to the host processor (A20 gate signal, interrupt requests to host)
- 8-bit bi-directional command/data bus

Two operation types (both emulate an addressing mode used by Intel 80x86-powered PCs):

- Regular host interface operation
- Fast GATE A20 operation

HIF Block Diagram H8/3437 example

- ODR2: Output data register 2
- STR1: Status register 1
- STR2: Status register 2
- HICR: Host interface control register

Keyboard Controller Function

Provided on some H8/300 (IKAP^{*}) devices only Provides a key-sense interrupt function scheme

• Controls a matrix keyboard using a keyboard scan with wake-up interrupt and sense port configuration

Used for keyboard control of an Intel 80x86-based laptop

• H8 CPU operates in the host interface slave mode

BIOS firmware support provided by SystemSoft and Phoenix Technologies

Interrupt Processing

Two types

- External interrupts
 - maskable IRQs up to 13 (H8/300L) and 9 (H8/300)
 - NMI only on **H8/300**
 - sensed upon rising or falling edge
- Internal interrupts (from on-chip modules e.g. SCI, timers, A/D, etc.)
 - up to 21 (H8/300L) and 33 (H8/300)

Masking vs. enabling

- All interrupts (except NMI) can be masked
- All interrupts can be individually enabled

Individually vectored - automatic interrupt handling Interrupts prioritized in the vector table

16-bit CISC Peripherals

- H8/300H and H8S
- Interrupt Processing

H8/H8S Technical Product Overview

16-bit CISC Peripheral Modules

Modules	H8/300H	H8S/21xx	H8S/22xx- H8S/26xx
Bus Controller	\checkmark	\checkmark	\checkmark
Timer Unit (ITU or TPU)	\checkmark	-	\checkmark
Pattern Generator (TPC or PPG)	\checkmark	-	\checkmark
16-bit Free Running Timer	-	\checkmark	-
8-bit General-Purpose Timers	-	\checkmark	-
PWMs	-	\checkmark	-
DMA Controller	\checkmark	-	\checkmark
Data Transfer Controller (DTC)	-	\checkmark	\checkmark
Serial Communication Interface (SCI)	\checkmark	\checkmark	\checkmark
I ² C Interface	-	\checkmark	-
A/D Converter	✓	\checkmark	\checkmark
D/A Converter	\checkmark	\checkmark	\checkmark

Bus Controller

- Partitions memory space into 8 distinct blocks
- **Provides chip select lines for each memory block**
- Selects access data size as 8-bit or 16-bit for each block
- Selects access cycles as 2 or 3-state for each block Inserts wait states (by software, hardware, or both)
- Provides bus arbitration and prioritization
 - CPU < DMAC < Refresh Controller < External Bus Master

Additional features - H8/3067, H8S/22xx-26xx only

- Idle cycle insertion to avoid bus timing problems
- Write buffer functions for parallel task execution

Bus Controller (cont'd.)

External memory support

- Glueless DRAM interface capability
 - up to 8Mbyte (64Mbit DRAM bank)
 - provides RAS, 2CAS or 2WE access signals
 - row address/column address multiplexed output (8/9/10 bits)
 - fast page mode support (H8/3067 and H8S/22xx-26xx)
 - CAS-before-RAS or self refresh options
- Glueless Burst ROM interface capability (H8/3067 and H8S/22xx-26xx)
 - up to 2Mbyte support
- PSRAM interface support
- Direct SRAM/EPROM connectivity

Bus Controller Block Diagram H8S/2655 example

H8/H8S Technical Product Overview

HITACHI

DRAM Connection Example H8S/2655

Timer Unit (ITU or TPU)*

Up to 6 16-bit channels (5 on some H8/300H)

- Two comparators/input-capture registers and a timer counter per channel
- Free-running, periodic, or external event counter operation options

Selection of 8 clock sources (internal or external) Buffering

• Input-capture registers in up to 4 channels

Interrupt-generating capability

- Up to 26 sources (compare-match, input-capture, overflow, underflow)
- Can activate DMA transfers upon compare-match/input-capture
- Can trigger pattern generator module to produce up to 16 PWM outputs
- Compare-match/input-capture can be used to start A/D conversion

ITU/TPU (cont'd.)

Operation Modes

- Normal operation
 - up to 16 simultaneous toggle/compare-match outputs
 - up to 16 capture inputs
 - one-shot output capability
- Synchronous operation
 - 2 or more counters can be preset or cleared simultaneously
- PWM modes
 - selectable duty-cycle
 - up to 15-phase PWM output possible
 - complementary overlapping or non-overlapping combinations possible
- Phase-counting mode
 - calculates phase difference between 2 external square-wave inputs

Cascaded operation (H8S/22xx-26xx only)

• 2 16-bit channels combined operate as 32-bit timer

ITU Block Diagram H8/3048 - example

ITU overall block diagram

ITU channel 0 block diagram

H8/H8S Technical Product Overview

HITACHI

ITU/TPU Operation Example H8/3048 - Input Capture

ITU/TPU Operation Example H8/3048 - Synchronized Operation

ITU/TPU Operation Example H8/3048 - Complementary PWM Mode

Pattern Generator (TPC or PPG*)

Outputs up to 16 independent PWM waveforms Trigger mechanism

- Compare-match from 4 ITU channels
- Trigger signals activate groups of 4 outputs at a time
- Overlapping or non-overlapping output options
- Can operate in conjunction with the DMAC
 - Compare-match trigger signals can activate the DMAC for sequential transfer of output pattern to the TPC

TPC/PPG Block Diagram H8/3048 example

Legend

TPMR: TPC output mode register TPCR: TPC output control register NDERB: Next data enable register 8 NDERA: Next data enable register A PBDDR: Port 8 data direction register PADDR: Port A data direction register

- NDRB: Next data register B
- NDRA: Next data register A
- PBDR: Port B data register

PADR: Port A data register

TPC/PPG Operation H8/3048 example

H8/H8S Technical Product Overview

HITACHI

TPC/PPG Operation Example H8/3048 - 5 PWM output pattern

- The ITU channel to be used as the output trigger channel is set up so that GRA is an output compare register and the counter will be cleared by compare match A. The trigger period is set in GRA. The IMIEA bit is set to 1 in TIER to enable the compare match A interrupt.
- H'F8 is written in PBDDR and NDERB, and bits G3CMS1, G3CMS0, G2CMS1, and G2CMS0 are set in TPCR to select compare match in the ITU channel set up in step 1 as the output trigger. Output data H'80 is written in NDRB.
- The timer counter in this ITU channel is started. When compare match A occurs, the NDRB contents
 are transferred to PBDR and output. The compare match input capture A (IMFA) interrupt service routine
 writes the next output data (H'C0) in NDRB.
- Five-phase overlapping pulse output (one or two phases active at a time) can be obtained by writing H'40, H'60, H'20, H'30, H'10, H'18, H'08, H'88... at successive IMFA interrupts. If the DMAC is set for activation by this interrupt, pulse output can be obtained without loading the CPU.

16-bit Free Running Timer (FRT) Only on H8S/21xx devices

One channel with 2 independent comparators

• Up to 2 simultaneous waveforms

Four input-capture lines

- Current count can be captured on rising/falling edge of input signal
- Two channels can be used as buffers for the other 2 channels

Counter clear option - upon compare-match Selection of 4 clock options

• 3 internal and 1 external

Interrupt-generating capability

• 7 interrupts upon compare-match, input-capture, and/or overflow

H8/H8S Technical Product Overview

HITACHI

FRT Block Diagram H8S/2144 example

8-bit General Purpose Timers Only on H8S/21xx devices

Up to 2 channels

• Two independent comparators per channel - up to 2 PWM outputs controlled by compare-matches

Counter cleared upon compare-match or external reset Selection of up to 7 clock options

• Six internal and one external

Interrupt-generating capability

• Compare-match and/or overflow

Cascade operation

• Channels can be linked to operate as 16-bit timer

8-bit Timers Block Diagram H8S/2144 example

PWM Timers Only on H8S/21xx devices

8-bit PWM Timer

- Provides 16 independent PWM outputs
 - generated by comparison between one time base and 16 independent comparators
 - adjustable duty cycle (0-100%)
 - max. 1.25MHz carrier frequency
 - direct or inverted outputs and enable/disable control
- Selection of 5 internal clock sources

14-bit PWM

- Provides 2 PWM outputs with a variable dutycycle
- Can be used as a 14-bit D/A converter if connected to external low-pass filter

8-bit PWM Block Diagram H8S/2144 example

Direct Memory Access Controller (DMAC)

Full address space can be specified Byte/Word transfer options Operation modes

- Short address mode
- Full address mode

Activation sources

- Internal interrupts
 - upon timer compare-match/input-capture events
 - upon serial channel transmit/receive completion
 - upon A/D end-of-conversion (some devices only)
- External request
- Software request (auto-request)

H8/H8S Technical Product Overview

HITACHI

DMAC Block Diagram H8S/2655 example

Legend

- DMAWER : DMA write enable register
- DMATCR : DMA terminal control register
- DMABCR : DMA band control register (for all channels)
- DMACR : DMA control register
 - MAR : Memory address register
 - IOAR : I/O address register
 - ETCR : Executive transfer counter register

DMAC Modes of Operation

Single address (fly-by) operation - only on H8S/22xx-26xx

- Single cycle bus transfer
- Maximum 4 channels

Other short address modes

- Sequential (I/O) mode
- Idle mode
- Repeat mode
- 4 channel simultaneous operation (8 channels on H8/3003)

Full address

- Normal transfer operation
- Block transfer operation
- 2 channel simultaneous operation (4 channels on H8/3003)

H8/H8S Technical Product Overview

DMAC Single Address Mode Operation H8S/2655 example

DMAC Sequential (I/O) Operation H8S/2655 example

H8/H8S Technical Product Overview

HITACHI

DMAC Idle Operation H8S/2655 example

DMAC Repeat Operation H8S/2655 example

DMAC Normal Mode Operation H8S/2655 example

DMAC Block Transfer Operation H8S/2655 example

Data Transfer Controller (DTC) H8S only

Provides DMA-type software-controlled function Control register information stored in on-chip RAM Operation features

- One channel transfer at a time
- Transfer possible upon any peripheral interrupt request
- Multiple data transfers can be requested by one activation source

Operation modes

- Normal mode up to 64K byte/word transfers
- Repeat mode up to 256 repeat byte/word transfers
- Block transfer mode up to 64K transfers of max. 256 byte block

Can generate interrupt requests upon transfer completion

DTC Block Diagram H8S/2148 example

Legend:

MRA, MRB: DTC mode registers A and B

CRA, CRB: DTC transfer count registers A and B

SAR: DTC source address register

DAR: DTC destination address register

DTCERA to DTCERE: DTC enable registers A to E

DTVECR: DTC vector register

Serial Communication Interface (SCI)

Max. 3 channels - IrDA v1.0 support on 1 channel (H8S/21xx) Asynchronous operation

- Adheres to standard asynchronous communication formats
- Error-checking and break detection capabilities
- Max. 625Kbits/sec.

Synchronous operation

- 8-bit data length
- Max. 4Mbits/sec.

Other features

- Full duplex communication
- Built-in baud rate generator selectable bit rates
- Selectable clock sources internal or external
- Interrupts upon end of transmission/receive and/or communication error
- Multiprocessor function serial communication with multiple devices

SCI Block Diagram H8S/2144 - one channel example

Smartcard Interface Operation

Only on some H8/300H and H8S/22xx-26xx devices Uses one SCI channel only ISO/IEC 7816-3 compliant Asynchronous communication type

- Supports direct and inverse convention
- Automatic data retransmission
- Error signal detection

Interrupt generating capability

• Transmit buffer empty, receive buffer full

I²C Interface (H8S/21xx only)

Subset of the Philips I²C serial bus interface protocol

- Up to 2 channels of 2-wire serial link between H8 and external devices
- Comprises a single data line and a clock line
 - can provide direct bus drive (NMOS open-drain outputs)

Operation features

- Master and slave receive and transmit mode support
- Automatic generation of start/stop conditions
- Wait state insertion during master or slave mode
- Arbitration lost condition identification
- Addressing or non-addressing format support

Selection of 16 internal clock sources (master mode) Three interrupt sources

- Upon data transfer end
- Upon slave address match (in slave receive mode)
- Upon stop condition detection

I²C Interface Block Diagram H8S/2144 example

PS: Prescaler

A/D Converter

Up to 8 separate input channels with 10-bit resolution Up to 2 conversion modes

- Single mode: one channel A/D conversion
- Scan mode: up to 4 channel sequential conversion

Sample-and-hold (S&H) circuit

• 2 interleaved S&H circuits on H8S/2655

Conversion time

- Min. 6.7µs (most devices)
- Min. 2.2µs per channel; 1µs continuous conversion (H8S/2655)

Triggering by s/w, TPU/ 8-bit timer, or by dedicated input pin Interrupt generating capability upon end of conversion Selectable analog conversion voltage range

A/D Converter Block Diagram H8S/2655 example

- ADDRB : A/D data register B ADDRC : A/D data register C
- ADDRD : A/D data register D

CMP : Comparator array S&H : Sample and hold circuit ADDRE : A/D data register E ADDRF : A/D data register F ADDRG : A/D data register G ADDRH : A/D data register H

D/A Converter

Two independent channels 8-bit resolution Conversion time - max 10ms Selectable output voltage range D/A output held in software standby mode

Interrupt Processing

Up to 8 priority levels (3 levels for the H8/300H) Eight level masking

• Decides acceptance of priority interrupts

Independent vector addresses assigned

• No interrupt-identifying handler

External interrupts

- Max. 9 maskable (IRQs) and 1 non-maskable (NMI)
- NMI triggered upon rising or falling edge
- IRQs triggered upon falling edge, rising edge, or active level

Internal interrupts

• From on-chip peripherals (timers, SCI, A/D, DMAC, refresh ctrl.)

Interrupt Controller Block Diagram H8S/2655 example

Legend

- ISCR : IRQ sense control register
- IER : IRQ enable register
- ISR : IRQ status register
- IPR : Interrupt priority register
- ICR : Interrupt control register
- SYSCR : System control register