--_003_017901cb3ae300db72800300a8c0main_ Content-Type: text/plain; charset="iso-8859-1" Content-Transfer-Encoding: quoted-printable RussellMc wrote: > I have used the exponential filter extensively in the past BUT it has > such sluggish performance under some conditions when it is usually but > not always useful that I sometimes add ad hoc rules to it to modify > its behaviour. eg priming it with current sample value on input would > be one possibility (depending on input function). The tradeoff between random noise attenuation and the step response of a single pole filter is fixed. No free lunch to be had. However, you can significantly decrease the step response at the same random noise attenuation by cascading multiple filters. This may sound like a free lunch, but it's not since the computation requirements have gone up. Fortunately single pole low pass filters are relatively easy to compute, so using multiple poles is often a good option. To illustrate this, I plotted the step response of two filters with the sam= e random noise attenuation but with different numbers of poles. The algorith= m for each pole is as described previously: FILT <-- FILT + FF(NEW - FILT) For the single pole, FF =3D 1/16. For the 4 pole case, FF =3D 1/2 for each pole. Note that the product of all FFs for each filter is the same. The step responses are dramatically different however, as you can see in the attached image. --_003_017901cb3ae300db72800300a8c0main_ Content-Type: image/gif; name="a.gif" Content-Description: a.gif Content-Disposition: attachment; filename="a.gif"; size=10785; creation-date="Fri, 13 Aug 2010 05:36:30 GMT"; modification-date="Fri, 13 Aug 2010 05:36:30 GMT" Content-Transfer-Encoding: base64 R0lGODlhWAIsAfcAMQAAAAAAQAAAgAAAwAAA/wAkAAAkQAAkgAAkwAAk/wBJAABJQABJgABJwABJ /wBtAABtQABtgABtwABt/wCSAACSQACSgACSwACS/wC2AAC2QAC2gAC2wAC2/wDbAADbQADbgADb wADb/wD/AAD/QAD/gAD/wAD//zMAADMAQDMAgDMAwDMA/zMkADMkQDMkgDMkwDMk/zNJADNJQDNJ gDNJwDNJ/zNtADNtQDNtgDNtwDNt/zOSADOSQDOSgDOSwDOS/zO2ADO2QDO2gDO2wDO2/zPbADPb QDPbgDPbwDPb/zP/ADP/QDP/gDP/wDP//2YAAGYAQGYAgGYAwGYA/2YkAGYkQGYkgGYkwGYk/2ZJ AGZJQGZJgGZJwGZJ/2ZtAGZtQGZtgGZtwGZt/2aSAGaSQGaSgGaSwGaS/2a2AGa2QGa2gGa2wGa2 /2bbAGbbQGbbgGbbwGbb/2b/AGb/QGb/gGb/wGb//5kAAJkAQJkAgJkAwJkA/5kkAJkkQJkkgJkk wJkk/5lJAJlJQJlJgJlJwJlJ/5ltAJltQJltgJltwJlt/5mSAJmSQJmSgJmSwJmS/5m2AJm2QJm2 gJm2wJm2/5nbAJnbQJnbgJnbwJnb/5n/AJn/QJn/gJn/wJn//8wAAMwAQMwAgMwAwMwA/8wkAMwk QMwkgMwkwMwk/8xJAMxJQMxJgMxJwMxJ/8xtAMxtQMxtgMxtwMxt/8ySAMySQMySgMySwMyS/8y2 AMy2QMy2gMy2wMy2/8zbAMzbQMzbgMzbwMzb/8z/AMz/QMz/gMz/wMz///8AAP8AQP8AgP8AwP8A //8kAP8kQP8kgP8kwP8k//9JAP9JQP9JgP9JwP9J//9tAP9tQP9tgP9twP9t//+SAP+SQP+SgP+S wP+S//+2AP+2QP+2gP+2wP+2///bAP/bQP/bgP/bwP/b////AP//QP//gP//wP///wAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACwAAAAAWAIsAQAI/wDfCRxI sKDBgwgTKlzIsKHDhxAjSpxIsaLFixgzatzIsaPHjyBDihxJsqTJkyhTQgSgkaXKlzBjypxJs6bN mzhnAthJ0OVAnxKB5hxKtKjRo0iTKpXpkufPnhWFLp1KtarVq1izhhTq1OfOpjy/in03ViDQrwXR qjWrta3bt3Djym2p0Ctbsnjzsmz69O5Ztnz3zh1MuLDhw0md5u2rd63ex335MjYLFrHlyxmlLiar GbPnq5L/Qhb8WLLf04FPf17NGqFiypzxvm5NO3FY0bEdB0YLlfNesL/t1h6+mutP4cSTV+2csDNz 5dCHG4ftV6z169iza9/Ovbv37+C9P/8ZPz68+fPo06tfz769+/fw48ufD37ic4P3U06PrXqmuof/ ORSgQ8E8VKBA5CU4HkEHNtQgQw/GNCBDEy5U4UIRKpShhgZ2SNOFCYGIkIgIbVgiRCYelCJ+BE3j jDPNuAjjNGnl15tN+5FmWkPCPNSjhw4CmZGC5DVEokFHFpRkQT/yiKKQGNa05EBTClSlQE0ylCWE UHL4IYAPATWjizG6yGKNXoVm40jC8cbbZlwS+KScdFJEZEVX5jlnkF0mtGJBf5qkp4B7xlmnoYhK CKZDYsb4oqPOnAnVbWHltpyUixr5ZIJeHhqlpzANqmmfJ5KqoqkoiUphoZ+C6meYLZL/OY2skkZW mm9r3pSrSKpa+FCRfLpaarAy9arQle8EOpCyy6IKKKaERivsqc4yCOtAMkIaY62oAQbZVLtuqZC4 nSZaLkLAgmRsiBCRi5C7w5r76pfSrurjvdU2O22qmcrq75gEjSkwt74dV92uNe3KbLKsnuswQQuS tO6IDc+777MXC5qpvRnr27FACy/M60CPZmtyyQwh3FxhKn808UEiRmztxyDnWzO9o+ZMbKs7Pxyv ovX6ajPDAglcptGzRsrzQi0f1HRi0OosNMRP/Oyz1RbLq9LLSFaMddZLX81v0MfuOWPJaJ/dM9h1 Redau/jSHDLVL3GtJNwOwUvt2l+n/2Q3QcjqzaTXeyOa9NGIH97R35PR5qabhBsk8tx0yrz1xlPz XbjWm4t9EuNWRo6x3Atpmy3QUrdt37VFhZZW1BxTaLnnM5NO88hkszv05LvDftC/idNKpei1ay45 6+8Qma7BjB5l15tPcwR68sR7bPzonI+duu62d5/95ySfPSPgmIfNNu3WM0218q9zpVhXlEX/kXW9 ASBMgerc/07++OvP//7+C2D/BghAAv7vgAIsoAIRiL8nGDCBDFwgBCf4wApK0IIRzCAFL8hBDWJw gx7sIAhH+MESitCEIUwhCQEYPGegcIUqfKEMT0jDCAJFebMjja1SsyOcTEdhQyPa9f8QJMRilY97 Q0yf+fp2PJzFLnPfq534IFW8JXaubkd820BwWLXjvOlWssGVrix1m7v4J4tb7CKyKOc9K2rviWXr nRyT+JDDKQ6OSISiG7EXRSWuLI3s41ZqwthDplDnkPLTCNe6GLo50rGIe9RY7ijmyD7e7JEFORmM 8ITGrlUykn7UIoJw6DQ0MQ84l4qblqp3SYMwspWowyMl86ZKS0ISfRLr5N0WgjQaLURwfMTlLbE4 yVJmhmWsHOb5vvZKWIZKl+T7pDDZaMRierJFaKuiMJV5RSaCz5qvOyZhEpmRdTWzkW0EpTOX6Tdo Dk+a7GwinwB2OXBGM53TRJ7bGvf/TLKdE52P5B0+67m9WQY0mX8yndJiqcc8qpOb3YwowfYZrlo+ NEP/hOg3CwozvDkJnhLdKMeA50uArpKWIJVnNTk6UbcB8XbUpJ43JcnSXQ50pqEMKU0VYjpZ4nSd 8QxmUHfaUFHW5nHIWWnsMmrSiyI0iCGZ3hqDmCLhxbSfNb3nQVMazqOqppDEzBlTm5pPrmozrD69 5lY9hTKh/nQkUn2qWflZHOZ966N4XetYNUrUOGaVIMAcSGBzqtKHjuxofk2rQQb7DsbylbBubac9 6foZSkUmGPjD7P40qw7OejazoN1saDs72s+K9rSk3Z8DUWva1Lq2tbAtrWxZO9vX/9Y2trTNrW11 i9vd+ra3wL2tcHObtuH+1rjB5S1yl6vc5h7Xucl9rnRNS063wO+uDC3bXsk6VMhGtrDbjKo7ufvW CNnRTN5NL1Al+1fy6lS96wXvH1ujo6/67ljbda983/rY+H5XpEXtaO9OV1ZMiney+v3vWbvr3xux BpUFM2Nef4nQ/PYXruPdn0dPetP9WoSe7dUwgrFk0QLbEnchrq5hXorJhVn4wihWrFZtKdC1XkRt EonrXOF7VbQGuKXRUbFFqvSE6V24xjS+r0OXDLY7Lri8UFVXhqcK06EJeZxKPkiRM3xkuRpYyiOe KoH522P+HjjEVG6xlfcJ5IMw1v+xyqpamdkr43eidMJO/RiIpTflDVN4xzA+c50lzGY45bljco6y y/oM6C7vC8eC/rFNbZzk20U6seorNGXpjK4E25nShz7xpZks4ExuUsHwdfSXFx1mL4N6vkdN03XP uBA1cnnO721wqkdt0MyND8qAFhmvSz1oXRv72Au7slXKuB88JwTOteZxlokt6cHd+dUnIlN2Sa1W Dnu70qv2yPSUvZzfRNjQJv4eI3ENYEy7O92hTkhblVrtT4Mb27nG8IjJXe7dsGW6zAW4cosc3YIH 3ODQPbjCE85wgXf2aAt3OMIlHvGJW7ziGG/4xTXOb3BNBqwE1fKM381gGLP7yW//1KOMuh3vlpc8 xvX2tLQB3fGlpMlWJX4X4Zp58pLo+Np/7l6ZXj5slnN7sTkHdrgXl+GaIyU4lAK50jXHc0WLm9Ed 9vDxXiRqMKPZ1fc2bNEnnWlNozvkEDN6r11e8p7nsiFJG7Gq8a31dh995PDOu1EL7fRJntPIbke2 1ZmukEeJOMRzD3t4vV7sNJ848H1vS0WBbr5/Bh7mJKd20L9tRfQK3okxP7yzdR7saavdmGZn8eNF XneU233td3e97LX569kfG/Oxl/nns257fafY7ITG6hZhT/ypK57oXtd28U+fbySzndOZZ37rUw15 4J8d+hkFPFUbLd5thd7xhg28/7AZ/32wP7/Nypn86K2W0cuPHe/LRzrl5e3946M9+mTfvP7Pj+q3 /544SLVpzccqTOV+5Id/8Gd8CGEm4md6+Zd7u0d3/ed7xRZ5zvMUrgN6TKV9VcZ7IDEr9oaAIah3 Coh8rPZ1jVZ9AFgp/aFUY8WBauaBHXFqIxh/CTiApQd6Iqh7icd/DkZfwREZMDSEM8Q/RUaENYSE MZSERaiETkhA2raEUviETFiFU9iEWGiFVHiFWpiFXLiEFmgUz9OC9hcvY2WAJ9h4XlZ7OLh0fNZq Kch9BwiBYTgUOlRf16c9ewWDqyeDFEGDOyh6odeDJDh9/qeGcUgzdZgTEAY9Uf+zh7e2fX4IEY6C dcVGiG03eG+IgpOogqnnZ+OyJ3uFhlcHh/NXENsCbZP4fjWoeaF4iiVoZnNogwKYfubnJdtFioTH icbDdbfXgDoIgeC3TcBIa//3ifSyXXwYfnL4Ows1ET8ngROoi5uIiJ24ZsC3iJSkjJHYgdJYOiXF Sab4jTPnhhsRjWXYhiljferHeRySX9R4jpbobfUnf344fmlYfklnj+QYaLPoinvHZqrHjPCoifI4 jnHiiy9XjPQWiMO4kM1YisfoOGNRFtoIMxa2jMTIfZ53kLyYjoaIidAnjLeYic1ji3BykUiSkd0Y g/1Yj9Woj9e4iv8ofTcYks7/J0wqaYfxU4vWtn4qYmHxqEjziBCpuI84aZBEiZD792wlmW+4R4vB R184BwAbR3GsVTVYuZVX2ZUZt1sv8pVeqXFiWZZkeZZcaZZpiZZjiZU76UNn8pbDx5SFmJTT0pFR CZB6qY4g2Xt5aZOtyJc+6JOWgRxShxIvppEQOVDheIgy2Y8iGZJ/+YBSGYF9SZjItBmOiJSA9SsM uW2VeSEg6Gac2XtDWU5F+YpAaZfmuJQTyXdP6UqfKXyPCYis2Y/4KJHWCJmz6WOBKJdQMxNbRpcm eY9F0wyguZeUGYvMKZmsqHsPSWbYiIwyMZwfOZjlCCF4eX8kmYiQ+ZyCGIiR/3mbZadp7diUIteb 3FmZjYmepJmDxrib7kh6xhmMlQmcTxebaaeeI0mLMRKdUMmfKeeQ+jmNSoma+8aOwhme3TmT1+N9 ubmL8omdlrl4+Uig3mlL+HmBMWFrxNmc5FkQzxihMYmhDnqZjmmivDmdFKkW7wOKTskQXSSgrweQ thk4pZmdYleTywmYgpWjFWqCuhl6G0oTGTiQ6DOjESmhDfWMgRmidemX4KmY0kmTF0qH0HGHU2kS jISOFJp423l7U9qSffidPHqTaGqaBYqZiGEafLGWWOlAatmWdIpc/1mnbDmnepqnfAqneOqnewqo fRoMRWpI9gWkwLRuS1qiuv/Tnj5KYrAomELKpCo6n+9Zn/FJpF6lmYuBpEOlqFY6pMdim5U5ngZq aWf6pGmqoxRKoh5ZgZvqPmzaEa/kpVHae8iJqlcammvKqpPKqLyaoQ9VqEShkrWamsWZRGF5oBhh q8mKov64q8q5qkH6rKpDnavZmQrxSjTaVwahNEb2Zr0araLaoNn6o/DZkFiajbFZdaFKqSKqqvLq q9b6q6/6mNBqqruWqrpHrDypEs3krCAaWR15ms2KrAOrprparsF6osOqoADboxJLrfoaSu1psBch sJJar7IorY8KoJLpieYJo/TpSlDaseXqqOEKpBVLrvDasOcKqZiqrveZHEj/dZgnK1MK25oIOhAw Oa8MyrEJK6b8GrTTurO46YDU6q8qMUizqhF/h7AbGy+OSq/9ebQ8eHnd6nNSm7NTi36F2akvmhJR +6FfK0+5KrQDaq75urUpyrZfKrJAaCl6sYVDqJV264V5m4T/ubdf6LeAq7eC24WE+7eDa7iFG7iJ a0JMixJJhbOnarJeO4G84qRwe6tW65xFS6UBuqj3+pux2pPYRRL/pLGTi4qe65oTirnVCpVjKnda y6J1FWGbyaUwO4hut6zvCqxYa7RnG7ld57ETC7Qt27KNO0aIynqnu68cAa5d+5OW+rvMy7C9i6OR urxEK7xLC7H41H6pSxGe/2e6wAutrqq6+Bq333uwCcquJ5F9z4u0BtGYbkuB58u6LVu+Pbu6aou9 eYiSJbGB70uvPzu/k0mtIEu5BPy6iBe7isi9MdtYkiu92VsRVSu+2vrA96u0QGu9GJzAm6tPAml+ BZi+DZG2H0umzLi7n3u5+zu+Fkq9j3q8jtsTSTUSAGy25Fm1rau52rvB45rB9lm9Pyy3VFkps2bD lSqebESqLmyv5pvE9uvBPQydQyy7D3YjkHvB33aGJGyU1wmBEHy9TYyyLyvEyZuuyRnDK1gWevGn n0VwgerGo+VCgxrHdlzHeCyoeizHeczHe2yWMlwSN0eGIfGCAYxsJtyqGv9MxcJqvwp8iQz8SIEs yN4yuiBhyDg8gZbLuvirvl/cwvD7wmV8wo1ccpO8FaJbuw+cJaPYxT4bERaMrh3syhQRyzIbvfzb yRnbdA58b62swgexyfVbqpGcr4+Mu5JoplPsu101sqQ7zL2rUaeWk6D8treLvsCcv9AswTvczLD5 zFBMzIXnl1IMw8ObtclszB8Mu+n8sOwrxrKci+krzJlMvOKKxrQZziXrntysy0PGy++sV+SbEfRc z+jsjeq8zJwbsrQMjQCNrZesv9G8IZtMzUNLv/rMzUCcqRnNv8bbyx/BjQbtTMJs0Rp9zErczo68 zgus0qZss10BOWess9X/7LLvUNAQYcthPMvZ7MkSfam4PMauy9LrKB3e7KmlUpDvitM5fcjFW86j fM7MLNT9vMhT/bSDYZFjW8ifPNEkk8LKbM4GXMU9vcsj/dRWvKmn8cebpZV+PJYudMdsPddvLdd1 3cd2ndd4PainbBKicZ6vqNRmytQ55tT3PLNpLNUcHNSh7MTaDLqOkxsuuqVQJpTcR9iFfdbF/KUo DcabvdIKDcKeURl2VXMsedaYbXINndldrdFQzbuk7LA6CdIccdqtLaKfXdMF7MOlfNG7zciy/dIB zdgkZtkymNoOfdaHnbRBHNurPK7+LI6vGcK9Y9zfiNzJfdtUnctWvdAI/7zasPzQzhzSh7wkC5Xb vt3Z4ozQnE3UyMzesz3ctV3evNTYNR3dtezU6H3S7p3S8C3cEM3PTPJiAord0v3T/Cjg2y2l/Q3G yz3QzS3VfS0SAUjZzUfgIGXgB77NHv3aK3zNUQzeTb2+Rl2VEU3fwezaIo7iwZ3eDb7eLqmha6yl /VsRL3bVwB0wvu3hT8zCO77iI33A5JzWlVXaZqG46rBaiLvk/kPHTH64SB7lUD7li1vlT27lUo7l VH7l/zPhJDG2SK28zP3V62nGLc7foc3O/+3iad4QXj4/GEjIUDvivIjT++3R6u3Va47mYs3bZx6S b84RUCe6NT4RN47jiP8+IEx95wvOtZrt0mze5znetkQeZCTrSqq4VRr+4Wb+3Pjsmz4O1Apu30Pd 5kUd4Li0WqW36Zzu3JRe1v/86HuO5y+OeuM933TeeKnN6KS+tiCu2zz+2KHe4ZWepeSd66GH3Lye uTXq6tgc1lE91r2db4GuH5eedpluSXQc4dIOz7cM4Rw97NA76szO4KZent+MaKrdMZGC39mN4I1e 7tMb7X6+orC+4ZBts/GTxRFx6InOEM477bR+7v4d4+1N8J4N6dSefj2kbP5uNwsl5NQH5NpNvMve zd766z/ewADYGDU86lWT7XuUtu7O2vCuxeSO8fMO24p97eOuyNwOtNX/3hH11RV1Csd77VtOftd0 rdc9n/M8H/Q+L/RAn3EzvxH0g3Mb4e//7sUUe/HFm+ePitb3nt+ybvDxre9tQqvvXlSWK/G/SPEn f9BYr9tSL9VUL8lq7fH8/u2sJ/IPk8gTTO+TnvJwb/a1PvUPDvPhXrPyTTtK+kkl3d0ovJFV3/Ud He8qP/csv71/bxFM3ytyb/EKP/CS3vR/rvi/jfn2rvaPbydWLzWTT/ZlmtCX791Dfvgmz+GaT8QU 5fKMdPdUK8qNX+/EvdNjTrOdfvuyz+d0j+hH79eiA6pCt6MID+Olf/CnX/iLCe2136+0beOhby86 TPmzrvln//SVj/15/4/2UJ9s0Q/6iM8uo+/929/rzd7yAs/9x6/nZf9WwS/ohA7YaSfLB1X9K9/q 6u/tuA/uuu/sAPFO4ECCwggeRGgQ4UKBwRgudPjwYESJFS1efKcOY8aNADZ+BBlSpEUAHt+ZRPmR 4sInBFdafCkx2DSMMUfeFKgRo86LPC/aZAg06EahCIviBOmzolKJTGUSVQm1JlKqOTc6ZWiy6lau Hz1+HZhya8uRWBfS3Bl1qtSfbLuGNIsw7sG5E93CvPv0rci6A/tazfvwqN21F7XuRZwYrNaU6oI5 dAz5ccbJkSlLbmlZc2XOkj1fvjxt8+fRoEuf7mw6NWrSq123hq06Nv9r2bVp335tOzfu2bt99wau Ozhv4cWJH/9t3PfhxM23loR+UqBYjAoZkhVove1FZ4MHencOuOfVj9ormq8I/p169c7/cky7Ef3D +YIDDw0/Pr7h/P1HHhaLuu1YIqwwiZxZ7z7//CJvvwHxUtCoCBd8r0K1HoQQQ70WZMhCjJjjMMSF AJyupLDGwqkuBOHTz8D0LswwRhEZdHApGF+c0KUc+/OwRQ3t27GhjmYk8j8Ub5prRRYtei9BF3H8 Eb8ixWOywSeBvFJKGYnsscogncwSoiGnJJM/+R7CLrsbEWrmuy/ds9LL6s78kr0yl7SxxvPoDFPC PimMsyIQ7yR0ujX/B0oTzCgFUlJRKKfsMs8/dazzzeYibepQLbfEklMRMX1o0ELvFDWkRJN6qE2C QO30UU/FnJTHQDOttNZFOWR1oSbttJWkUX81lKpTUV2oUSolvbXAZCldVlY9H9r1TV6bzS9XuTSF NVYhPwT211IXqu/U+jYdCC1mX8V1VmjL45NaRzeEVN0O2Z2zV1e5lHfEbkOE7qvopLvv1PZsUlXZ e2e0li5s/dT23VbxfXZeew8m92GE80Xo230VC/ZEYZFiylyFI664ZJMZRhdQkq+dGF6Ks4135ZEb HvhLjTfeCyUTO8Zp2I9CltjHlM8d2s2G4ZR51YUNfhnlplUWmlaa/5cmWqKbceYqOn+nEwayrjP6 Wp2wx4bsCa/PBhttsdX+ehqy04Z77bjflrtuuu9mO++59babb7z3BrzvwP8WvHDCD/c78cEVN5xx xBeHvPHIH5e8csovd9yhq7HOmiABOR225nJdJv3ipGmcuuWToZaz9aK3Td1dpKMOlfPwGGOM55F8 /nl0qV1/uurSVxf+U4xndlf05O9MWGnViTfaTNtzPunffwHumSqejGWZdouhj/51h40//djgwxd/ 2pi915Vq9M+H3dfpidxcTYSGHRdW7p0ePsTmUb9I/g4iQKZ9D2ZF+p/5JELAgTDwfQbkn+nYl7H5 0W9NPqvZ/iIIvv/wJBBP8BsfB9WHwOM5L3bLO9qlSuixCvILKbz7mQa7B7z+bVCElkqMB6N1tBHW kHXIAiIIlSe++rWwc9nTngyRF0QfFu+GKczhChUIwQJS0Yk2TFf5PtjEB1qxi/oyIoeKiB6fOVAg BUsf86S4Rfq0K41QRIwO6RVA98UPhLOjYVbCKMYLcrA7z8viBJcoxDqGEIs//B0TvWhHQsJxLx4s 4h6REsmDwHAjolnjDmXXw0V2MJOFHGIjySRHQB7yigehpCRDpbWdYU8klrxIm0h5wjfKToVa1KT4 DFnFA0JMkCZEIS2tpsquBEh3eyII7xiIFk5yEI+KbJ8bFwhKHMb/8ZPSbGMpT+kfSBLzOdf7nKt4 N5iCNbOXEsxjNIXJRUZ28pmJhCc7d8lLU34xkOmkoDe/6TGPIKdsw0nNNJLjT+UA1KAFRShBFTpQ hh50oQ5taEIj+lCJQtSiFcUoclKpTxaCBWAbFQgsHyKyWQbTpHe85S8BWMuTyvOd69LiPO1Zz3bq kaMh2ZqJPOpKi2gHhvkTmUxrek7yqXSKDDGjGYW61PakFJ+DnGa91ulMp0Iznzf1Sok8lzu3wFAo QWVqNR95zak+0ZZRxCU1tTlTbq4RpFgd5u5Gwr2SstSuLq1qPIPWUnma855WhWonQynPt8LVpq8U yf7qKkq+UhWt/0Zlo1kbS1T/kXWylKUpTw1LlTEmM6oH0aBf6YlImEL2HUlV61mtmVZsIjW1usxr aeW32edcyJIxkaFot+ksyObyjrplK2+fCsy79lWsb+kmbWuLWJCgMbDqHO5uh4rZ0UrXk6wtK3Wt 29THRveo2g1ueJdaWOWyECQiJYgSF2vctU6XtHsFbHXFG1ZHIteyxRXsmMpLkp3165iftaR5wLrd 43ZlvdmkY3uX+lL46tW1Ur2sfKvl1v3yt3o8LSJFbksQ52YWuBPGboQlTN9R3pex+AUviCFLXo7q tJWpRK9ABvzcGcaXwArm7mp7+1oUZ5bB0LWxeAfbSRbr05jSQf9OZn4jmok2+aIUhbKTMyrlKD+Z yle2cpanrOUqb9nLjikyMUEUzqjCUiEzHvGHr7vj1oKLx3jtbpAj62YI93jEP65xXCsMRtwFK8Mh xQua01xgrhxYsna2Lp5pvOhB41iNWgyzEf3FSq6eFyNKJK6D88ze7N45tg2WLaJvrNqxhljUQtbv nkVCSfRiOtOh1rSH3+zOTwM51o3udKJrvWlQ51fBkd5sZ0UqjA77mtT2NTUyE5zr+e6a0StVdk9n 7Vgde1ezqk41XkTq6lHDNs63hjanRdzsb8Pa3MYet3vbCmlsG8nSFSk2uL/7bFQ7ukyGTvGC1Zzj UrOZ2fWWXrv/s/puicT73LY+eL6HfGhfWtu3Lt33o/2dbnWLF9iGFXZFaKLUiN/bxJ+Vtr1LnGyQ R/vUC3b2qw8r8K22/L+CgSVNFq5wiTt82gyndbl7jXB0n5zfyF4xyymYkkpjxJKCTji95yxrka/P 5gomsberLeeHu1PNF29h7o68EUtym9c8BzvNm05Ckvf8xHCeuryXjmuKYz2MO0XJ5TJDtz9aLnOT u7vd8b53vfcdc3z/u9/zHnjCD97wgD+84BG/eMUr3u2Sxh6ZYf6QRs2c6SOf+MmjjlKdh13pmz97 ztOedM8JHZVclfx1Co6kj5td3Jwf/c6/LvZ/o7zzs/+8mkFf/zvTT9rFRbcI77wue6VX3Zkdx/zT a797avdb+RRnPhhNH/Dgj3SAN/dxysNN/OvXOfTNB/rzQ75siv/cwBSePvUr4rMOW57tZM/893EO /vOXff73z/7tlf74Fn/EZ0gXP7WLPtqTOuejOuy7vAIMvwOEuqtLP/VDE4YAwAAkvW7zuZpjwOVD PqfLQOhzwAcUFK5DjxnjOKjTvnlTuQcjvwv0OPujsxWUv/yLPc8rPRDUs+DDreMzQf1LQdx7vxj0 NB7cPhq0QCDUNSFEQfOywauqPtDaCnxLQBZMvg7UvA2EPwp0vSyUvvTDnf4yumJ5wtbDvyhEOwNU O+PLtwEMwv8Z9MEhJMCT47/peTFU+kLtMLjTQsAjZMPim6PxKz8MPMM+NDkjJLc97EE6BMEuVMII XIk7dL8iRCcqJESAU8D6i7/Xm0TbM0Q3RMQHHDNDuQ2zCY0uI0Us+zJTLEUuQ8VVVMVWPEVXTMVX lEWNssFPvLb7OYg75AsxfMNMNL9C40UyxETRM8MKTEJKhMPpQ72tucVKsh8ALMHlO8G148Tug8Fh pD9gdMGEaLNeJMYFVLs4xJmim8MmdIgJfERkbDhJxMYx1MNi5L5qhEQtlEF4JMKXW8Jm9KyBGL5g PMQfbMd6BEdjpEZ1DMg1tMc2PMaKY8iGVA9xFLMmZJRNXEj/NPQxK1zHQGzAHaTIgvRINQTIlcvH GpQI7CA27zvIdxzIeFxIPERJekTIlbzHj0StsctIgoRIVboZ7Bi+dHRIQCRIi7wzjIxEjdRAjkzI /RvJLVQ9GUNCjxTKRCPKosJCd5zHNJxGDwLJq2TCpcRHQDujrFyjrTTIbAzDbQxJq2xIRftHeSxL tdRHbFPEr3wH7HCbbhRGs6wKKLRGP5RCDjTKa1TBP2zBoPNE1KNLspA5aUFKmVTIj9S9qawstOTK vMTKp3yPnMQa6kg9sOxHuPDHykxLgbTEqvRGmFTJ0mRH1BTNRRQ6zgTF1RDF7oBFVpxF24zF3MTN 3azN3rxN/9/UTeC8Ms0cx47pTLJQlZqsvV88y0tEML/0RaBkSZrEy9GMSdUMx1rkp69sCSWJzMbE zqDMw9ZcS7GMqe+URszMtnarNHAqyXeYQJAJzbc8zcvsSK1ET+gzT9PKTyLyyk7ERV1sTtO0zPok TW10TrgkS01MyrZsyf4EIeJ8uwgUGeUkzCkMTOh8zr+8wtUczEFMyUJsULeMy0REk6CC0BBVMQK1 zhYVUcfkw41Mz/tcz6UslSf4TNajTPos0OtEUBYlz5+sr/Cczqicrw/8z5fD0feaSSNdS8n8qwzN xAVlzr2cTyGtPQmFPJboMAvl0JssUkEsuegsTCBtoOoM0v8q1R70S9JbDB3GnNERrcjx5NHU/FEP NdAetdMBlTMtBRbrsR4CiVLxlFH9VM/zhFNDpVFE5SGb8cQTYY5BiTE+lVIVxdJKvNNKZc06fVEi bVI6vdQQ5EJIDVRn/NAxtVQ1lc8dtR/BhEtVTZErdUlXzdM9tVJ2G1WeQYnOeILg/M1f9dVg5U1g HVZhFc5jJVZkpSg/HZU+8zNTncwErdU0lc5PLVTN209rW9AFZVZSMRSi+5xJzVRCPco4hVEHhcxE xdZD5U91jVBlNK9yBMsNRdVNZdBzJdEm8VIyxVBypdW+/NKixMk25ZkNa1Rz9dTHdFJ9A89xDdNr ndJsFdX/NtUKcU3YGC1XRZVTqARVKq1Whe1YJE3Siu1QTVVQKGVSkIVYS2XLfA1ZRyVYkxg2NOXU 8mRXbd3XVP1YjP3XggBVWNVRw6TYeWVZlF03adVTai1TPE3amr3Xi0XXbpXDuuzXh83YdV3Udj1Y jcXXOV1ZImPPVioRnckdi+1ajv1aBZVYAUxRe21Zr73ad1U1AdE6P4uxnLVXoC0LWcXbV91ZdNVX mg3VMjzbzJTLjgoL1IuxtlXbm5WzbTVa4WJaF3Vavd1FXN2z9kxcj3mCfvHczwXd0BXd0SXd0jXd 00Xd1FXd1WXd1nXd14Xd2JXd2aXd2rXd28Vdsd0vzf1W/7ok2N8F3uAVXsQwprr9qI4oos3R3VUK uG8BEOclyS1c3ngtFbGt3udlXtfUqs3NCmfNGPfsXu89PXkdX/Hdqv6CXu3tqPT9SuzlvQsbEfD9 3hcTFf96OfuF3/nl3viNXuUqVUAFV/lR3qvRKQG2GvS9xTmcXnC6XlLl32fNp5zi3wAeOp3p3uNd Xhc7XpsqYN5jRumb3hr84Ai+XwtuYOkIYfrNXhSu362L3g4GUBZmyhSmwwUW4Qm+MKntFuDjM/4g 4DG5GRfuxNQzX0QM4u0kYTI7skEJkPrt3ff1qOqFYBDGxyK+YQNOYCGG1CkuPSveXo2J4v/63/hF TP3dXv8zht4yBtDOfE31PT0fNozrOeAjjjyRDGEMjivPPSz8/d46Xrk7LmDn9T0prp4UhuEWdjn9 3akJ5uPzLWQm3uBrW2QbJjo9IltKHltIRuFFpFtIDmQOfuQxyyk5TtxDHkkeZspVIuUeFtU7nmIn duOPamQkTmBaHmLtJREonmU/rmUuHjo3ZmMWXuVETmMx1uNjOuYWprQMPmbN0uPOhLs89pVmfmB9 DOMkjmWWC+YSjWFQnlgw9mWSpOP2tWVxvt9yjtcbrOIrXmMxfmJNhuGrQmVZjmTEJeJwZuf3tWZ0 RmJ4rmd+WuRbPuccRuYtluR39sphnt/6GeA4dmXjBOTGTCZkch5bXV5gACZj0F3oeX7mi17mjK7o hQ5lMu7fUiZbkH5kix4mam5nlfbgYbZfmF5mJrbe8D1pkU5pki7k4eXpnvbpnwbqoBbqoSbqojbq o0bqpFbqpWbqpnbqp4ZqzgnoVo7qqrbqq16QqVZnrObqrvbqm2BGSgvlDv7orzbrs/bqa47mTWbr a0brt4Zrp45irTFOPG7ruMbrvD5qtfbjMK5kbtbrwBZsG9Uqus5kgt7pbR7sxWbsxnbsx4bsyJZs VQsIADs= --_003_017901cb3ae300db72800300a8c0main_ Content-Type: text/plain; name="ATT00001.txt" Content-Description: ATT00001.txt Content-Disposition: attachment; filename="ATT00001.txt"; size=208; creation-date="Fri, 13 Aug 2010 05:36:30 GMT"; modification-date="Fri, 13 Aug 2010 05:36:30 GMT" Content-Transfer-Encoding: base64 LS0gDQpodHRwOi8vd3d3LnBpY2xpc3QuY29tIFBJQy9TWCBGQVEgJiBsaXN0IGFyY2hpdmUNClZp ZXcvY2hhbmdlIHlvdXIgbWVtYmVyc2hpcCBvcHRpb25zIGF0DQpodHRwOi8vbWFpbG1hbi5taXQu ZWR1L21haWxtYW4vbGlzdGluZm8vcGljbGlzdA0K --_003_017901cb3ae300db72800300a8c0main_-- .