--_003_AANLkTim9dkCeGxR5oYmACC0tDM8dJqYnN8HRZpoC3YOmailgmailco_ Content-Type: text/plain; charset="iso-8859-1" Content-Transfer-Encoding: quoted-printable > So you can give it new names, but you're really just computing the > average of the last N samples. =A0(now, if there's a lot of difference > in samples, you might notice that recent samples have more "weight" > than older samples, but that's just a little detail...) I'll quibble gently. I know you know, and your comment further reflects the knowledge, but I think a better way of putting it would be something like: 'The "average" of ALL prior samples + the latest sample, with the new sample being given a "weighting" of 1/Nth of the new "average" '. Note that "average" here does NOT have the same meaning as 'average' usually does. Olin explicitly addressed this with his signature "do you really want to keep all N sample". I didn't think so". Readers are free to decide whether his "I didn't think so" is valid for them - and in many cases it will be - but by making this decision you have a MUCH different beast than an average over N samples. What this is, as has been noted, is a single pole exponential function. With a true N samples average you start dropping off whole prior samples N periods after they have happened. With the exponential function you drop off only an Nth of the effect of a sample N+1 ago. That they can be very different in response is easily seen by graphing some typical step responses. I just produced some Excel graphs with varying N lengths and step functions of Y samples =3D 1 and all others =3D 0. A graph of only one such is attached. Blue curve is input step. Octarine curve is true average Yellow curve is exponential filter under discussion here. Do you think they are identical? I didn't think so :-). Whether this matters depends on application. Input function can make a large difference. I have used the exponential filter extensively in the past BUT it has such sluggish performance under some conditions when it is usually but not always useful that I sometimes add ad hoc rules to it to modify its behaviour. eg priming it with current sample value on input would be one possibility (depending on input function). The exponential function has the advantage of starting up properly from 1st sample whereas true averaging needs either a sliding length for the 1st N samples or some other handling of its boundary conditions. "Horses for courses". Russell --_003_AANLkTim9dkCeGxR5oYmACC0tDM8dJqYnN8HRZpoC3YOmailgmailco_ Content-Type: image/jpeg; name="AVG5065 q70600.jpg" Content-Description: AVG5065 q70600.jpg Content-Disposition: attachment; filename="AVG5065 q70600.jpg"; size=14132; creation-date="Fri, 13 Aug 2010 00:47:48 GMT"; modification-date="Fri, 13 Aug 2010 00:47:48 GMT" Content-Transfer-Encoding: base64 /9j/4AAQSkZJRgABAQEBLAEsAAD/2wBDAAoHBwgHBgoICAgLCgoLDhgQDg0NDh0VFhEYIx8lJCIf IiEmKzcvJik0KSEiMEExNDk7Pj4+JS5ESUM8SDc9Pjv/2wBDAQoLCw4NDhwQEBw7KCIoOzs7Ozs7 Ozs7Ozs7Ozs7Ozs7Ozs7Ozs7Ozs7Ozs7Ozs7Ozs7Ozs7Ozs7Ozs7Ozs7Ozv/wAARCAGDAlgDASIA AhEBAxEB/8QAGwABAQADAQEBAAAAAAAAAAAAAAQDBQYBAgf/xABOEAABAwECCQcICAQFAgYDAAAA AQIDBAURBhITFSExVZPRFCI1QVN0lFFUYWWy0tPhIzJxdZGhs8EHFoGxJCVCUpIzZENEYmOC8EVy 8f/EABkBAQADAQEAAAAAAAAAAAAAAAABAwQCBf/EADURAQABAgMFBQgCAgIDAAAAAAABAgMEERIh MUFRgSIzkbHBExQyUmFxodEF8CPhJEJTYoL/2gAMAwEAAhEDEQA/AP2YAAAY5ZMlE9+I5+Kl+K1L 1X7DWU1s1FbZLayns9UldK+PIyyo1GYr3NVXORFu+r1IoG3BJZtdnGz4qvJ5PKJ9W+9Nd2hetPIp UB6AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAeAeg8AHoAA8NPUYOxT2e+hbX1cML5XSuSNY9Kue56ot7VvRVddcvUiem/cgC TkEclAlHUySVDEREVzlRjnXLen1Eaif0RDjqFHNinYk02KyrqGNvlctzUmeiJr6kREO8OEotVV32 q/XeBRzu1l3juI53ay7x3EABzu1l3juI53ay7x3EABzu1l3juI53ay7x3EABzu1l3juI53ay7x3E ABzu1l3juI53ay7x3EABzu1l3juI53ay7x3EABzu1l3juI53ay7x3EABzu1l3juI53ay7x3EABzu 1l3juI53ay7x3EABzu1l3juI53ay7x3EABzu1l3juI53ay7x3EABzu1l3juI53ay7x3EABzu1l3j uI53ay7x3EABzu1l3juI53ay7x3EABzu1l3juI53ay7x3EABzu1l3juI53ay7x3EABzu1l3juI53 ay7x3EABzu1l3juI53ay7x3EABzu1l3juI53ay7x3EABzu1l3juI53ay7x3EABzu1l3juI53ay7x 3EABzu1l3juI53ay7x3EABzu1l3juI53ay7x3EABzu1l3juI53ay7x3EABzu1l3juI53ay7x3EAB zu1l3juI53ay7x3EABzu1l3juI53ay7x3EABzu1l3juI53ay7x3EABzu1l3juI53ay7x3EABzu1l 3juI53ay7x3EABzu1l3juI53ay7x3EABzu1l3juI53ay7x3EABzu1l3juI53ay7x3EABzu1l3juI 53ay7x3EADqLKVXWTRucqqqwMVVVb1VcVALJ6Hou7x+ygArAAAAADhKLVVd9qv13ndnCUWqq77Vf rvAoAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAHUWT0PRd3j9lALJ6Hou7x+ygArAAAA8A9OEotVV32q/Xed2cJRaqrvtV+u 8CgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAdRZPQ9F3eP2UAsnoei7vH7KACsAADHNNHBE+aaRscbEVznuW5GomtVUyE1d Sx1lHJBJFHKjm6GyNRUv6l0+kiRlhmjqIWTRPR8cjUc1yalRdSnEUWqq77VfrvOqo6WsprCpaWKW KKpihjYrpI1kYioiIuhHNv6+tDh6OK1rqnFraNP8ZU330b105Z9//ieUkbYEORtjz6i8G/4oyNse fUXg3/FAuBDkbY8+ovBv+KMjbHn1F4N/xQLgQ5G2PPqLwb/ijI2x59ReDf8AFAuBDkbY8+ovBv8A ijI2x59ReDf8UC4EORtjz6i8G/4oyNsefUXg3/FAuBDkbY8+ovBv+KMjbHn1F4N/xQLgQ5G2PPqL wb/inM0tbhZbFo2lFR2jQwR0VQsFzoF03daa/wC5bbtzXntyyRMu0By/IMN9s2duPkOQYb7Zs7cf I69jHzx/ehm6gHL8gw32zZ24+Q5Bhvtmztx8h7GPnj+9DN1AOX5Bhvtmztx8jx1Fhs1quW2bOuRL 1+g+RMWYn/tH96EZzOWTqQaKzX25W0Mc/K4ExtGmPXdov0IU5C2/PKfdndWF0zlNcZ/36N9WD0zl VcpifvP6bQGls2rtO0IXujrKRqxvVq41M59/pvR6J+RZkbY8+ovBv+KUXLc265ongy3bU2q5oq3w uBDkbY8+ovBv+KMjbHn1F4N/xStWuBDkbY8+ovBv+KMjbHn1F4N/xQLgQ5G2PPqLwb/ijI2x59Re Df8AFAuBDkbY8+ovBv8AijI2x59ReDf8UC4EORtjz6i8G/4oyNsefUXg3/FAuBDkbY8+ovBv+KMj bHn1F4N/xQLgQ5G2PPqLwb/ijI2x59ReDf8AFAuBDkbY8+ovBv8AijI2x59ReDf8UC4EORtjz6i8 G/4oyNsefUXg3/FAuBDkbY8+ovBv+KMjbHn1F4N/xQLgQ5G2PPqLwb/ijI2x59ReDf8AFAuBDkbY 8+ovBv8AijI2x59ReDf8UC4EORtjz6i8G/4oyNsefUXg3/FAuBDkbY8+ovBv+KMjbHn1F4N/xQLg Q5G2PPqLwb/ijI2x59ReDf8AFAuBDkbY8+ovBv8AijI2x59ReDf8UC4EORtjz6i8G/4oyNsefUXg 3/FAuBDkbY8+ovBv+KMjbHn1F4N/xQLgQ5G2PPqLwb/ijI2x59ReDf8AFAuBDkbY8+ovBv8AijI2 x59ReDf8UC4EORtjz6i8G/4oyNsefUXg3/FAuBDkbY8+ovBv+KMjbHn1F4N/xQO2snoei7vH7KA8 si/M1Ffr5PH7KACwAADw9AA4Si1VXfar9d53ZwlFqqu+1X67wKAAAAAAAAAAAAAAAADl8D+lMI/v Fx1By+B/SmEf3i4vt93X080TvdQAChIAABHa8ixWTUuRL741b+Oj9yw1VvfSQ01NeiJPUNat/UX4 anVephqwdGq/RE8/Lats6LI2dTx333RpqQoCIiIiIiIiargV11aq5q5qLlWuuaucuTwJr0nWpguu VHuX/i6790OsODwKXI1KyXq1JaqeNV6l1Kifid4bMfEe0iqOMf6acV2tFfOmPxs9AAGBjAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAdRZPQ9F3eP2UAsnoei7vH7KACsA AAAAOEotVV32q/Xed2cJRaqrvtV+u8CgAAAAAAAAAAAAAAAA5fA/pTCP7xcdQcvgf0phH94uL7fd 19PNE73UAAoSAAAaqrXlGEFHE1EXk7XSPXyX6v7G1NVQ/TW9XyqqfRNbGiJ1/wD241YbZrq5R57G 3CdnXXyifzsbUAGVicFg99HYDqnSiw2tIquT/S1br/2O9OKwXg5RgjabLtKVszk0+S5TrbPmWos+ CVb73MS9V61PRxfaoz5TMerZV2sJRPKZjx2woAB5zGAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAA6iyeh6Lu8fsoBZPQ9F3eP2UAFYAAA8AHpwlFqqu+1X67zujhaLVVd9 qv13gUAAAAAAAAAAAAAAAAHL4H9KYR/eLjqDl8D+lMI/vFxfb7uvp5one6gAFCQAAFVGoqqqIia1 XqNVg+mNSS1Cre6aZzl0FdpzpTWbPKvUxUT7V0HllQup7Mp43/WRiKujVfpu/M1U9nD1TzmI8G2j s4WqfmmI8Nv6VgAysTlcAmNksOtY5L2urpkVPRoNvg89VszJOvx4ZHMci9S+T8zVYAdDVff5f2Nn ZqZG17QguVuM5sjU6rl6/wAz0bnai7T9p/vi2YftYe5Tyyn09W1AB5zGAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA6iyeh6Lu8fsoBZPQ9F3eP2UAFYAAgtqolpLIqp4X Yr2R3o7/AG+n+ms0c1pVbLMliZWSyuZXJBHK1WI+RlyL9ZUxUW+9L10aDqXMR7Va5EVqpcqLqUnz dRZBYORwZJWo1Y8k3FVEW9Euu1XqoEdlWjK/B6nrJWy1MisTGSJqK5y33ehFOMo7TVEqf8vrVvrK ldEadcz1u1n6MyNsbEYxqNa1LkaiXIiHDUX1anvtT+u8DFnRdnVu7TiM6Ls6t3acS4AQ50XZ1bu0 4jOi7Ord2nEuAEOdF2dW7tOIzouzq3dpxLgBDnRdnVu7TiM6Ls6t3acS4AQ50XZ1bu04jOi7Ord2 nEuAEOdF2dW7tOIzouzq3dpxLgBDnR2zq3dpxObwUrlitK33cjqX49oOW5jEVW+hdOs7I5fA/pTC P7xcX2+7r6eaJ3t1nRdnVu7TiM6Ls6t3acS4FCUOdF2dW7tOIzouzq3dpxLgBobarnVFCkPJKmJJ JGo5Xxol6a7k06y9LSVqImb63R/7acTBaqpNaVn0yJjLlFe5vVchtjVd2WaI+8tt7s4e3T95/vgh zouzq3dpxGdF2dW7tOJcDKxONwGrlhsiqbyOpkvrZVvjYiomrRr1mzSuWK31l5LUplobljcxMZVT yJfq0E2AHQ1X3+b9jZ2uuRrbPqb8XFmxVXqRF1noxtxFdPOJj8NmB21TR80TDPnR2zq3dpxGdF2d W7tOJcDzmNDnRdnVu7TiM6Ls6t3acS4AQ50XZ1bu04jOi7Ord2nEuAEOdF2dW7tOIzouzq3dpxLg BDnRdnVu7TiM6Ls6t3acS4AQ50XZ1bu04jOi7Ord2nEuAEOdF2dW7tOIzouzq3dpxLgBDnRdnVu7 TiM6Ls6t3acS4AQ50XZ1bu04jOi7Ord2nEuAEOdF2dW7tOIzouzq3dpxLgBDnRdnVu7TiM6Ls6t3 acS4AQ50XZ1bu04jOi7Ord2nEuAEOdF2dW7tOIzouzq3dpxLgBDnRdnVu7TiM6Ls6t3acS4AQ50X Z1bu04jOi7Ord2nEuAEOdF2dW7tOIzouzq3dpxLgBDnRdnVu7TiM6Ls6t3acS4AQ50XZ1bu04jOi 7Ord2nEuAEOdF2dW7tOIzouzq3dpxLgBDnRdnVu7TiM6Ls6t3acS4AQ50XZ1bu04jOi7Ord2nEuA EOdF2dW7tOIzo7Z1buk4lwA6eyFvsahX/t4/ZQCyeh6Lu8fsoALAAAPD0ADhKLVVd9qv13ndnCUW qq77VfrvAoAAAAAAAAAAAAAAAAOXwP6Uwj+8XHUHL4H9KYR/eLi+33dfTzRO91AAKEgAA1cV8uE0 zrkRIYEZ9t+n9zaGqsVMrNW1TrsZ86s+xE//AKbU1YrZXFPKIhtxuy5FHyxEfgAPuON0r0Y3Wpjr rpopmqqdkMWWblMAOhqzv8v7G3t2J0llSOb9aJUkT+i8LzLZljUdi0z46CZ81PUSLO1zlRdLrr9K dV6fmZ6qNJqSaN19z2Ki3fYaLGKovXab9vdMr8PVNq9TM8Je00qT00UqansR34oZDX2FKstkQXuv cxFYvouXQn4XGwIvU6LlVPKUYijRdqp5TIACpSAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAOosnoei7vH7KAWT0PRd3j9lABWAAAAAHCUWqq77VfrvO7OEotVV32q/XeBQAA AAAAAAAAAAAAAAcvgf0phH94uOoOXwP6Uwj+8XF9vu6+nmid7qAAUJDFVTNp6WWZ/wBVjVUymut9 6ssmVET66o38y2xRruU085X4aj2l6mnnJYMSxWRDe1EV17l9N69f9LjYnxCzJQsjVb8RqJf9iH2L 1eu5VV9UX6/aXaquchSv+Gp8Vf8AqS6/Qh800bXPV7/qM0qY5ZFlkV69Z5N3/kX4tf8AWnbP34R6 y4jZGbTYH10lo4Kosul9HVSwY1+tqOvT8EVE/obY5/8AhquPYtoRL/rrZrvt0HQGi3HssResxwnO PtO3zzRO6Jaqxfop66l0okcyq1qpqRdRtTVMvp8JXt04tVEi9X1k+RtT08VtrirnES143bciv5oi fx+wAGViAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAHUWT0PRd3j9lALJ 6Hou7x+ygArAAA8J6+sbQUM1U5qvSNt+Ki3Xr1IayXCPk9nSTTUzWVMc/J3RZRVZjql6c5G3qly/ 7b/QBuzhaLVVd9qv13nZ0NVyyiiqcVG5RqOuR2Mif1OLovq1Xfan9d4FIAAAAAAAAAAAAAAABy+B /SmEf3i46g5fA/pTCP7xcX2+7r6eaJ3uoABQkNVbCZats6mW7FdKr3Xpf9Xq/ubU1V/KMJUVqIra aG5y+ldX9zVhdlc18omW3BbK5r+WJn8ZNqeoiuVERL1XQeFFKiJjTu1Rpo9KnnYm97G1NfHh9+DH EZy9nVIomwJr+s5b+smPXOVzlcutVvPDnC2ZtW8p3ztn7zvKpzlzf8OX5OzKl193+YS3/kdTUsyc 70RLkvvQ5LADoas7/N+x2NQuUhim61TFUY3/AB/yFNfCrOmfOPUp20ZNDaf0NqWfUaWor1jc7q06 k/ubU1mELFdZayNRceJ7XtVF+rp1/mbGN7ZI2yNW9rkRU+w9O72rNFXLOPX1bL3aw9urlnHr6voA GViAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAHUWT0PRd3j9lAeWT0PRd 3j9lABYAAJ62ljraSWllVyMlbiqrVuVPShAywWMp3xpW1SyPkSXLriY6SJ/q+rdfdcl111yajbng EUVk0TbNbZ0sDKinRNLJ2o9HLffeqXXa9Oo4SksSyXJU41l0a3VlS1L6dmhEmeiJq8h+kHC0Wqq7 7VfrvAw5isfZVF4dnAZisfZVF4dnAuAEOYrH2VReHZwGYrH2VReHZwLgBDmKx9lUXh2cBmKx9lUX h2cC4AQ5isfZVF4dnAZisfZVF4dnAuAEOYrH2VReHZwGYrH2VReHZwLgBDmKx9lUXh2cBmKx9lUX h2cC4AQ5jsjZVF4dnA5vBSy7PntK32zUFNI2O0HNYj4WqjU8iaNCHZHL4H9KYR/eLi+33dfTzRO9 usxWPsqi8OzgMxWPsqi8OzgXAoShzHZGyqLw7OBrrMsyz6mprnS0VK+Nk2TjjWFqtYieROq83dRK kNNJKqomI1VvUisGLJ2VG5UVFkVXrel2tTVb7NiurnlHq22uzhrlXPKPV95ishVuSyqJV7uzgXVF nUEVAyzko6fIouO6LJJiX/ZqM9IxHSq531WJepikesj1e7Wqni1/5sVFHCjb1nd4Mu6lr8x2Rsqi 8OzgMx2Rsqi8OzgXA9Bw43Aay7PqbIqnz0FNK5tdK1FfC1yoiXXJpTUdiyy7Pnsx1I6gpnRQrjsj WFqtavXcl1xzGAHQ1X3+X9jrqV6MnbfqdoUp/l6JmKqqd9M5x0TbaeewrMWnkSGzqSORWriuZC1q ot2jSiE1j2ZZdXZkUstmUj3qio5zoGqqqi69RvpWZOVzPIpp7BujZVUulFhndc1f9LV1f2U22K4u 4WZj6T4tlHaw1dPKYn0Z8xWPsqi8OzgMxWPsqi8OzgXAoYkOYrH2VReHZwGYrH2VReHZwLgBDmKx 9lUXh2cBmKx9lUXh2cC4AQ5isfZVF4dnAZisfZVF4dnAuAEOYrH2VReHZwGYrH2VReHZwLgBDmKx 9lUXh2cBmKx9lUXh2cC4AQ5isfZVF4dnAZisfZVF4dnAuAEOYrH2VReHZwGYrH2VReHZwLgBDmKx 9lUXh2cBmKx9lUXh2cC4AQ5isfZVF4dnAZisfZVF4dnAuAEOYrH2VReHZwGYrH2VReHZwLgBDmKx 9lUXh2cBmKx9lUXh2cC4AQ5isfZVF4dnAZisfZVF4dnAuAEOYrH2VReHZwGYrH2VReHZwLgBDmKx 9lUXh2cBmKx9lUXh2cC4AQ5isfZVF4dnAZisfZVF4dnAuAEOYrH2VReHZwGYrH2VReHZwLgBDmKx 9lUXh2cBmKx9lUXh2cC4AQ5isfZVF4dnAZisfZVF4dnAuAEOYrH2VReHZwGYrH2VReHZwLgBDmKx 9lUXh2cBmOyNlUXh2cC4AdPZCIljUSIlyJTx+ygPbJ6Hou7x+ygArAAAAADhKLVVd9qv13ndnCUW qq77VfrvAoAAAAAAAAAAAAAAAAOXwP6Uwj+8XHUHLYFOy9RblWxq5Ge0HrG5esvt93X0RO91IAKE tfbk2SsmVG6XSXRtS6+9V+V5XSxZCkhivvycbW33eRDX219JLQ02Nckk6KqJr0dZuImZSRrE61L7 9cWsLTNW7bLbcjThqKeczPozf9Gi8jpV/ImM1U9Hzrd9VvNQwnlYGiYt+0q31bZ67vCGSrfkAA3O XL4AdDVff5f2OoTQt5y2ATsnRWlSPRWzQV8mUavVfdd/Y6kvxO27UiNymp+kjjn63Jc77TQxJkcJ Z24qfTQo9LvRo/Y31P8ASwyQdd2M00NoJkLZoKlv+tVhdpuvRdX97zF/EdmbmGnhnl9t8fp6GF7V VVPzUz47/RtQAXMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA6iyeh6L u8fsoBZPQ9F3eP2UAFYAAAAAcJRaqrvtV+u87s4Si1VXfar9d4FAAAAAAAAAAAAAAAABy/8AD/oS q79L+x1By/8AD/oSq79L+xfR3NXRHF1AAKEtU/6fCaNEVVbTQqq3JqcvyVDfU30bJJ1/0pc37TQ2 XfUWlX1enFx0ib/T/wCob6f6Onii1XpjOKf5edU28NHHKJ+0bZ/TfiuzVTT8sRH98U2sAFsRlshg AASOXwQ6Wwj+8HfudQcvgh0thH94O/c6gvxHeT08kRuZIZMlK1/Ui6TWYUw5KBsyJoilbJjJrRL+ ovPbRjWssOdqfXYxU0+S487V7vjbV/hM6Z67v79WzCV6btM/V8scj2Ne3U5L0PSOx5MrZFM6666N G3fZo/YsNtynTXNPKVN6jRcqp5TIADhUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAADqLJ6Hou7x+ygFk9D0Xd4/ZQAVgADHLNHBE6WV6MYxL3OXUiGOnrqaqpuUwTNfDpvffoS7 Xf5DFa9JJW2XUU8SplHsubetyKuu5TU5otKqoayJVio31c+Wc17cq3FuRFYqI5uvFRV09dxA38E8 VTCyaF7ZI5Go5jmreiovWcRRaqrvtV+u86azLPrafB2loZapIamOJrXSwMS5LvIjr09BxdHRVipU 3WrOn+MqU/6Uelcs/T9Xr1kjbAh5DW7Xn3UfujkNbtefdR+6BcCHkNbtefdR+6OQ1u1591H7oFwI eQ1u1591H7o5DW7Xn3UfugXAh5DW7Xn3UfujkNbtefdR+6BcCHkNbtefdR+6OQ1u1591H7oFwIeQ 1u1591H7o5DW7Xn3UfugXHL/AMP+hKrv0v7G65DW7Xn3UfunN4DUtTJY1SsdoSwpy2VFa2Ni3ro0 6UUvo7mroji7I8e5GRue5URGoqqq9RFyGt2vPuo/dI7WhqqezZXvtOeRFTFxVjYl9/VeiXnFqjXc innK6xR7S7TRzlXgvEslEx7r1dNI6R9/2/I2lQ/KTvd1X3ISWTQ1FJZ0iuq5E+iRjExGfRuXyaNP 9byfkNbtefdR+6Ya6/b4+5d4U7I859FuKr13Kqo4yuBDyGt2vPuo/dHIa3a8+6j901Mq4EPIa3a8 +6j90chrdrz7qP3QNLgh0thH94O/c6g43BWlqX2phAjLQljVte5HKkbFx18q3p/Y6TkNbtefdR+6 X4jvJ6eSI3LjLTuaj1Y9EVkiYrkXyKazkNbtefdR+6OQ1u1591H7pjvWou25oni6icpzh82VC+kW ronJop51Rq360XSn5KbAxVNHLUoyeCtkilYxsc70YxVeqalW9t3Wuom5DW7Xn3Ufui1iJv06qvij ZP3j971+Jr13Jr5rgQ8hrdrz7qP3RyGt2vPuo/dLWdcCHkNbtefdR+6OQ1u1591H7oFwIeQ1u159 1H7o5DW7Xn3UfugXAh5DW7Xn3UfujkNbtefdR+6BcCHkNbtefdR+6OQ1u1591H7oFwIeQ1u1591H 7o5DW7Xn3UfugXAh5DW7Xn3UfujkNbtefdR+6BcCHkNbtefdR+6OQ1u1591H7oFwIeQ1u1591H7o 5DW7Xn3UfugXAh5DW7Xn3UfujkNbtefdR+6BcCHkNbtefdR+6OQ1u1591H7oFwIeQ1u1591H7o5D W7Xn3UfugXAh5DW7Xn3UfujkNbtefdR+6BcCHkNbtefdR+6OQ1u1591H7oFwIeQ1u1591H7o5DW7 Xn3UfugXAh5DW7Xn3UfujkNbtefdR+6BcCHkNbtefdR+6OQ1u1591H7oFwIeQ1u1591H7o5DW7Xn 3UfugXAh5DW7Xn3UfujkNbtefdR+6BcCHkNbtefdR+6OQ1u1591H7oHbWT0PRd3j9lAeWQl1jUSK t/8Ah49P/wAUAFgAAAAAcJRaqrvtV+u87s4Si1VXfar9d4FAAAAAAAAAAAAAAAABy/8AD/oSq79L +x1By/8AD/oSq79L+xfR3NXRHF1BqrdvmSko0v8Ap5kxrrvqpr/ubU1sjOVYT0cF6qkTFeqJ/pXy ixVFuZu1bqYmfCG7Ax/l1comfw3c30dNHF1rzlJjNVPylQ5epNCGE8vA0TTYiqrfVtnqyVznIADa 5AABy+CHS2Ef3g79zqDl8EOlsI/vB37nUF+I7yenkiNwAChKblTqa2qaJzr4Ktro3Nu600ov5lck bo3qx2tDUYQJi0kNSl2PBM1yXpr9BvpF5RTNlTS5mh13kM+JiLFdu/Hw19mfvG6eu5uu0RVYorjf tjwTAA0MIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAOosnoei7vH7KAWT0P Rd3j9lABWAAAAAHCUWqq77VfrvO7OEotVV32q/XeBQAAAAAAAAAAAAAAAAcv/D/oSq79L+x1By/8 P+hKrv0v7F9Hc1dEcXUEVhIklt2nWq3mxqkaKuu9E0p+RY9yMjc5UvRqXkmD7FZYj6l316yZz779 KpfcY8VOWErpjfXMU+M5z+IehhuxYuV/aPX0Wqt63rrU8ALIjKMoYAAEgAAOXwQ6Wwj+8HfudQcv gh0thH94O/c6gvxHeT08kRuAAUJSWpCs9mVEaa8RVTRfq0mWw6tH0NPJoxXMRrkT0aDMqXpd5TV4 Pri0EkCqi5GZzEXypr/dS25apv4Ou3Vzj8t1E54Wr/1mJ8djcVEWRlVvVrT7DGUx/wCJgySrz2aW +n0Eypctynm4S7VMTaufFTv+vKerHVHGAAG1yAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAA6iyeh6Lu8fsoBZPQ9F3eP2UAFYAAAAAcJRaqrvtV+u87s4Si1VXfar9d4FAAAAAAAAA AAAAAAABy/8AD/oSq79L+x1By/8AD/oSq79L+xfR3NXRHFvLWfiWXUKiKqubioieVdCf3LY4EpKG lpEu+hiRHXJdp6yKuh5XUUVLiK5JJ0c7TqRqKqmwnfjzvd1X6DDdnVdt2+WdU/edkerbVOnDU085 mfRjABexgAAAADl8EOlsI/vB37nUHL4IdLYR/eDv3OoL8R3k9PJEbgAFCQ1VFdBb9bCiq1sjWyIi pr8q/mbU1VUq0+ENJMv1Zo1iXRqXWn5mrDbddHOJ/G1twna10c6Z/G1t2PVj0e3Wi3madiSMy8aa F+unkUnMkMyxO1XtXW1es8jE2qtUXrXxR+Y5fpkpnhLGDNPCjFR8emN2pTCaLN6m9RFdKJjKQAFq AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAB1Fk9D0Xd4/ZQCyeh6Lu8fsoAKwABr7 bkmisarkgc5sjY1VHN1onWqf0vOfW1qGCxqlai1JlpGVSNp3tqlR8rFTQmUVb7ldjJjX9S6Tr7hc Bq7MqHU9gwzOldaCo1OdTuyquvXqdfzrvL6Di6O07kqf8BWrfWVK6IvLM9fKfpFxwlF9Wp77U/rv AxZ09X1u6+Yzp6vrd18y4AQ509X1u6+Yzp6vrd18y4AQ509X1u6+Yzp6vrd18y4AQ509X1u6+Yzp 6vrd18y4AQ509X1u6+Yzp6vrd18y4AQ509X1u6+Yzp6vrd18y4AQ509X1u6+ZzeA1dkLGqW8kqZL 62Vb2R3omrRrOyOX/h/0JVd+l/Yvo7mroji31FVOlrpank9QxlLTquI5tyuVy6Eu/wDiY86f9hW7 r5l1LclLUStu+mmu0eRqIn90B5tmdd25c+unw/3MtF6d1PKEOdPV9buvmM6er63dfMuBrUIc6er6 3dfMZ09X1u6+ZcAIc6er63dfMZ09X1u6+ZcAONwVrslamEDuSVL8evctzI71b6F06zpM6er63dfM 0uCPS2Ef3g79zqC/Ed5PTyRG5DnT1fW7r5jOnq+t3XzLgUJQ509X1u6+ZrrXrlclNOlNUxLDMi3y R3Iv5m/I7Xiy1lVDMVXLiXoieVNKf2NGGq03qZn+5tWDrim/TM8/PY+c6X/+Qrd18xnT1fW7r5mW zZctZtPJjK5Vjbeq+W65fzKSqunTVNPJRcp0VzTyT09so1VjfQVuTfoW+LV6dZ91060UyM5NUTtc l7XxMvav56zKZoZkRMlIl8a/l6TzbtuuzXN61Gee+Of1j6+aInPZLV509X1u6+Yzp6vrd18zZywr GiOauMx2pyGI1WrtF2nVROxExkhzp6vrd18xnT1fW7r5lwLUIc6er63dfMZ09X1u6+ZcAIc6er63 dfMZ09X1u6+ZcAIc6er63dfMZ09X1u6+ZcAIc6er63dfMZ09X1u6+ZcAIc6er63dfMZ09X1u6+Zc AIc6er63dfMZ09X1u6+ZcAIc6er63dfMZ09X1u6+ZcAIc6er63dfMZ09X1u6+ZcAIc6er63dfMZ0 9X1u6+ZcAIc6er63dfMZ09X1u6+ZcAIc6er63dfMZ09X1u6+ZcAIc6er63dfMZ09X1u6+ZcAIc6e r63dfMZ09X1u6+ZcAIc6er63dfMZ09X1u6+ZcAIc6er63dfMZ09X1u6+ZcAIc6er63dfMZ0XZ9bu fmXADp7IW+xqFf8At4/ZQCyeh6Lu8fsoALAAAAAA4Si1VXfar9d53ZwlFqqu+1X67wKAAAAAAAAA AAAAAAADl/4f9B1Xfpf2OoOVwDuWwKtqvWPGrpW4ya0VVRL/AMy6J02K5+xEZ1RDrnMyNPDCjMS5 mM5l99zl0qhjM1Wt9Q70aDCebgYyw9Mzvnb47Xdyc6pAAbHAAAAAA5fBDpbCP7wd+51By+CHS2Ef 3g79zqC/Ed5PTyRG4ABQkPiViyQvYmtzVRL/AEn2CYnKc00zlMS11gPxrJjbddk1c3Xr0mxNVZCZ CvtClRUxGSI9ieTG1p9mo2poxUZXpnnt8WrGxlfqmOO3x2gAMzIywzZO9rkxo3a0Pp9OitykK47e tOtDAfUcjono5i3KhiuYeqmqbticquMcJ+/1+rqJ4S+QU/QTrciZJ6/gphkifE7Felx3axNNdWiq NNXKfTmTTxfAANTkAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAB1Fk9D0Xd4/ZQCyeh6Lu8 fsoAKwAAAAA4Si1VXfar9d53ZwlFqqu+1X67wKAAAAAAAAAAAAAAAADnP4bxpJZc+NjXNr5XKqLd dddr9B0Zz38OExMH6+W/VWTNu6lvVCnGVTTgrkRvnKI67HVHxxLonOV7lcutVvPACymmKaYpjg5A AdAAAAAA5fBDpbCP7wd+51By+CHS2Ef3g79zqC/Ed5PTyRG4ABQkAAGqVchhMmNddUQXJpu0ovyN qau17466zZ0uXFmxLv8A9ruBtDVf7VFFf08m3E9qi3X9MvCcgAGViAAAMzKhzW4j2pI3yO6jCCq7 Zt3oyrjNMTMblGRimvWF+K7/AGO/YwvjfGtz2qh8mZlVI1MVy47f9rjL7PE2e7nVHKd/j+3WcTvY QU30sutronejSh4tG5UxontkT0LpEY+3E5XYmifr+9yNM8E4PpzHsW5zVT7UPk201U1RnTObkAB0 AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAOosnoei7vH7KAWT0PRd3j9lABWAAABDalZNSQxJTtYs0 8qRMWS/FRV61u9CAWnC0Wqq77VfrvOvsquzhZ0VUrMRz0VHNTUioty/mhyVDG9W1KoxyotbU6k/9 95EzEbxmB95KTs3fgMlJ2bvwI108zJ8A+8lJ2bvwGSk7N34DXTzMnwD7yUnZu/AZKTs3fgNdPMyf APvJSdm78BkpOzd+A108zJ8A+8lJ2bvwGSk7N34DXTzMnwD7yUnZu/AZKTs3fgNdPMyfBpMBoH0+ CTnPuRKmumkbd1tR2Lp/q1TfZKTs3fgYI2Ms2z6OhmlibJDCiORHXJf5dJlxFcV1W7Ucas56RPq6 jjLIDFymn7eP/mg5TT9vH/zQ2OWUGPlNP28f/NDzlNP28f8AzQDKDFymn7eP/mg5TT9vH/zQDKDF ymn7eP8A5oe8pp+3j/5oBzeCHS2Ef3g79zqDj8F7Qoqa1sIeUVkEWNXuVuPIjb006UvOjz1ZW06P ft4mjERM3J6eSI3LQRZ6sradHv28Rnqytp0e/ZxKNM8krQRZ6sradHv28Rnqytp0e/bxGmeQx29E klkyuVOdHc9q3dd5bTyZamikxkdjMRb069BDVWrZc1JNElqUaK+Nzb8u3rT7T4sSvp3WTAj54mua mLcr0TVqNWU1Yf7T5tu2vCbP+s+cf6bUGHltL5zDvEHLaXzmHeIZdM8mTTVyZgYeW0nnMO8Qctpf OYd4g0zyNFXJmBh5bS+cw7xByyl85h3iDTPI0VcmYGHltL5zDvEHLaXzmHeINM8jRVyZj1HK1b2q qL5UMHLaXzmHeIOW0vnMO8QiaM4ymDTVyWtq5U0KqOTyOS89y0EifSQ3L5WLcQ8tpfOYd4g5bS+c w7xDHV/HWZnOmnTP02eTrt8l2TpXJzZnNX/1IOSOX6ksb/Lc4h5bS+cw7xBy2l85h3iEe64in4Ls 9Yif0ZTxpWOpZ2/+Gq/ZpMasc1blaqL9hhbaMDV5tZGn2SJxMjbYYl3+NhVE8r2jLHU8KavGP2nR 9JAfWeKZdD5aVyeTGQZ0s931lp//AIyog9tiY+KzPSY/0ezl8g+s4WW7Qr42p5UmRf3HLbJXRylE 9OO3R+Y96rj4rVUdM/KT2VT5B9cpsrz9n/JBl7OdpbaMCJ/6nIPfaI+KmqP/AJn9I9lXyfIPrK2f tKn/AOScTzHpF0stClVPTKiD36xxz8J/R7Kvk8B7jU3n9JvkPuONkzlbBUQTORL1SORFVEHv2H+b zPZ18mMFHIZ/9qfig5FP/tT8UJ9/wv8A5I8XOmrknBRyKf8A2p+KHi0c6JfiX/YpMY7DTOUXI8TT VyYAZeTT9mo5LN2alnvNn5oRpliBl5LP2bhyWfs3D3mz80eJpliBl5NP2bhyWfs3D3mz80eJpliB l5LP2bhyWfs3D3mz80eJpl0dk9D0Xd4/ZQHtmNdHZVIx6KjmwMRUXqVGoC+JzQqAAAmraGGvgyM2 OiI5HNcxytc1U1KipqKQBHmyize2gfSxy0rURMlK1HtW5b9KLr06SKlwSsCmhWNLIopL3vfjSU0a rznK67VqS+5PQiG3cl7VRFVL0uvTqNTg9Ty0sddFK+eS6rerXzqquclyab/J9mjyDePl2CdgPq4q jNFEmTY5mIlNHiuxlat6pdrTF0fapklwXsCSJzMy0DcZFS9tLGip6U0G2BGUDUQYK2BDBHFmagfi NRuM+mjVVuTWujWfEOCdgQzTyZoon5Z6PxXU0aoy5qNubo0Jzb/tVTdAZQNNUYJWBOkf+UUUeTka /mU0aX3dS6NRl/lqwdh2d4VnA2gGUDS02CVgU0To0siikvke++SmjVUxnK67VqS+5PQiB+CVgSVU U+aKJMk1zcRKaPFdfdpVLtN12j7VN0BlA1T8GLAcxzcyWemMl16UrL0/I+KfBSwKemihzPQyZNiN x300audcl16rdrNwBlA0rMErAbWSVOaKJcpGxmTWmjxW4quW9Eu1rjafsTyCpwSsCoaxuaKKPEka +9lNGl9y33Lo1L1m6Aygav8AlqwNh2d4VnAw02COD9PGseZ6GXGke++SmjVUxnK67VqS+5PQiC2a WaS07KqIpJ7o6lUdGxeZcrH6XIn9Neg519FV1Fj2oyJK2F/IVy+IjmOlqEx79Otb9GlNejSMoHRS YI4PPqYZ8zULckjkxG00aNdfdrS7TddoMq4L4PqipmOztP8A2kfA2TE5jfsPskaWlwSwepaSGnSx qGRImNZjyUsaudcl16rdpUNwQweSskqczUKq+NrMmtNHipiq5b0S7WuNp+xDdADS1eCOD9VTPgWx qGJHp9eOmjRyfYtxm/ljB/YVm+Ej4G0AGlgwQwfhlqJMz0L8vIj7n0saozmtbc3RoTm3/aqnkuCO D0lRDNmahbkb+a2ljRrr0u0pdpN2ANV/LGD+wrN8JHwMVJgjg/S0cNMljUMqQxtZlJKWNXOuS69V u0qvWboE5yNImCGDyVjqnM1CqujRmJyaPFS5VW9Eu16fyQ9q8EMHqqlkgWxqGLKNux46aNHN+xbj dHgzkav+WMH9hWd4SPgYoMEMHoZaiTM1C/LyI/FfTRqjOa1tzdGhObf9qqSYVrTvWnp5IZnyytek ciRvdHBqvkXFRecn+n7V1aTVR0VVUUNfHGtbE/kknKXtRzHSy4y4um7TenWnVdpGcmTfz4I4PTui XM1CzJSI/mU0aY11+hdGlNJn/lqwdiWf4VnAto0clFAjr8ZI233677jOM5InLc01LgnYNNCseaaO S97340lOxV5zlddq1JfcnoRDz+U7BSsWpzTR3rGjMnydmKmm++67XpN0eDOU6p5tPV4J2DVUktPm mjiyrFZjx07Ec29NaLdrMv8ALdg7Fs/wrOBtAM5NUtLDgnYMM08maaN+Xej7nU7FRlzWtubo0Jzb /tVT2owTsGdI/wDKaNmTkR/Mp2JjXdS6NRuAM5NUtZ/Ldg7Es/wrOBipsE7BpoljzTRyXyPffJTs VUxnK67VqS+5PQiG5Azk1S0r8E7BfVxT5po0yTXNxEp2Yrr7tKpdrS7R9qntXgnYNVRzUy2TRxJN G5mUjp2I5l6XXot2hU6jcAZyapaz+W7B2JZ/hWcDDFgnYMU88maaN2WcjsV1OxUZc1EuTRoTRf8A aqmLCuOKWz8VWOdPcuQckT3o132N1O8irqIIaepqLZc26qp6h7pMvK1FRUiViYiI5UuXT5NWkZyZ zzbWpwTsGoaxM00ceJI197KdiX3LfcujUvWZf5bsHYln+FZwGDcckWD1FHMkiPbEiLlFVXf1v03m 0GcmqWlpsE7Bpo1jzTRyXyPffJTsVUxnK67VqS+5PQiHsmCdgvqYp800bckjkxG07MV192tLtN12 g3J4M5NUtW7BqwXNVMy0CXp1UrOB8U2Clg01LFAlkUUmSYjMeSmYrnXJdeq3aVNuejOTVLTMwTsF tZJU5po1ykbWZNadmK3FVy3ol2tcbT9iCpwTsGoY1i2TRx4sjH3sp2Iq4rkW5dGpbrl9BuQM5NU8 2r/lqwdiWf4VnAxUuCdg00bo800cl8j340lOxVTGcrrtWpL7k9CIbkDOTVLTS4J2DJUQzZpo25LG 5radmK69LtKXaTL/AC1YOxLP8KzgbQ8GcmqebT0mCdg0tHDTZpo5cjG1mUkp2K59yXXqt2lVPEwT sBKx1TmiiXGjazEWmZipcqreiXa1v/JDJhGtdmiWOggllfIitcsLmo9rblvVMZU09X9TnbIgrJ6m ma+KspatdE0it0tgyKIiY2lt+P1eW8jOZ2Gct9VYJ2BVUskC2RRRY6XY8dMxHN+xbjN/LVgbDs7w rOB5g3FJBYVPFLlMdmMn0qqrvrLdeq6VNoRlCGnpsErAp2PbmiikxpHPvfTRqqYzlW5NGpL7k9B5 LglYEtRDLmiibkVVcVtNGiPvS7Sl2nWboDKBq/5asDYdneFZwMVJglYFLRw0yWPRSpDG1mUlpo1c +5Lr1W7Sq9ZuQMoGl/lOwErFqc0UWmNGZPkzMVLlVb7rtek9q8ErAqqSWnWyKKLKMVuPHTMRzb+t Fu1m5AygatMGrAX/APB2d4VnAww4JWBDLUSZoon5eRH3OpmKjOa1tzdGhObf9qqboDKBpZ8ErAqM l/lFEzJyI/mUzExrupdGozLg1YGxLO8KzgbQDKBgoqZtHQwUrXvkbBG2NHyLe51yXXqvl0AzgkAA AAAHigAD0AAAAAAAAAAAAAAAHyus88oAHqaj0AD0AAAAAAAAAADwADxes86wAh9HoASAAAAAAAAA AAeAAeKeABD1p9ABIAAAAAAAAAAAAA8U86gAPeoAAegAAAAAAAAAAAAAAA//2Q== --_003_AANLkTim9dkCeGxR5oYmACC0tDM8dJqYnN8HRZpoC3YOmailgmailco_ Content-Type: text/plain; name="ATT00001.txt" Content-Description: ATT00001.txt Content-Disposition: attachment; filename="ATT00001.txt"; size=208; creation-date="Fri, 13 Aug 2010 00:47:48 GMT"; modification-date="Fri, 13 Aug 2010 00:47:48 GMT" Content-Transfer-Encoding: base64 LS0gDQpodHRwOi8vd3d3LnBpY2xpc3QuY29tIFBJQy9TWCBGQVEgJiBsaXN0IGFyY2hpdmUNClZp ZXcvY2hhbmdlIHlvdXIgbWVtYmVyc2hpcCBvcHRpb25zIGF0DQpodHRwOi8vbWFpbG1hbi5taXQu ZWR1L21haWxtYW4vbGlzdGluZm8vcGljbGlzdA0K --_003_AANLkTim9dkCeGxR5oYmACC0tDM8dJqYnN8HRZpoC3YOmailgmailco_-- .