This is a multi-part message in MIME format. ------=_NextPart_000_031A_01C38226.505C4BE0 Content-Type: text/plain; charset="Windows-1252" Content-Transfer-Encoding: 7bit I was trying to get a feel for the probable higher volume cost of various components based on known lower price breaks. While there can be many factors involved which make this an impossible task, a friend pointed out an approximate relationship which seems to work quite well enough top be useful as a ROUGH rule of thumb. "Prices decrease by the exponent of the volume" Unit price = $X 10 price = X / log10(10) = x/1 = X (duh) 100 price = X / log10(100) = $X/2 1000 price = X /log10(1000) = $X/3 ... 1,000,000 price = X/log10(1000000) = $X/6 Note that log(1) = 0 which mucks things up if you try to work backwards :-) ______________ You can also convert between medium and higher level price breaks. eg if 100 price is $1 then 1000 and 10000 price may be expected to be 100 1 1,000 1 x log(100)/log(1000) = 1 x 2/3 = $0.66 10,000 1 x log(100)/log(10000) = 1 x 2/4 = $0.50 This curve is a surprisingly good fit to reality (at least for Digikey). I tried it on various Digikey prices and plotted a graph for the LM324 - chosen due to its low price and popularity allowing quotes for a wide range of volumes to be available under the same heading. A graph of LM324's per $ against log10(volume) is attached. This would be a straight line if the assertion were true. A least squares straight line fit is shown for comparison. The match is close enough to be useful. Real prices get cheaper faster than expected as volume rises and then fall off to below expectations at highest volumes. Attached graph is ugly but small :-) YMWV ! Russell "All models are wrong. Some models are useful" McMahon -- http://www.piclist.com hint: To leave the PICList mailto:piclist-unsubscribe-request@mitvma.mit.edu ------=_NextPart_000_031A_01C38226.505C4BE0 Content-Type: image/gif; name="ic_cost2.gif" Content-Transfer-Encoding: base64 Content-Disposition: attachment; filename="ic_cost2.gif" R0lGODlhFwIvAYAAAAAAAP///yH5BAAAAAAALAAAAAAXAi8BAAL/jI+py+0Po5y02ouz3rz7D4bi SJbmiabqyrbuC8fyTNf2jef6zvf+DwwKh8Si8YhMKpfMpvMJjUqn1Kr1is1qt9yu9wsOi8fksvmM TqvX7Lb7DY/L5/S6/Y7P6/f8Ph9wACDoR1hoWDIYAKh42Oj4aLEYCElZaWkgyZgAOMjJ6An6KRpK Ompainqqmsq66toK+yobSztrW4t7q5vLu+vbC7wmmalAfHmMHLeYyGCc/Ax9tizorBl9ja2cvc2t Vt0NHp71LV5u/kR+rr5elM7+Dr/jHk9fHzNvn69/gr/v/9+hH8CBBCcILIgw4SaFDBtCOOgw4j6I EivSo2gx4zqM/xo7iuPoMeQ2kCJLQiNpMuUllCpbPmLpMmYhmDJr7qFpM6cdnDp7avMJtBLPoETR DC2KdMzRpJSo6VvK1BE1qJCoRiU01erLq+ym/tPKFU9WgGDD1vE6sKxZZWgRqJ25llvbQE7tvY3r bS5dZhfxRtOLaVm4Yd/u+iUzdpNhOYkEL1h8GAxgvuYcV4McmctkzHQsF1OUNbTo0aRLmz6NOrXq 1axbu34NO7bs2bRr2779Whim3Y8zS61L1+5uypN8G2rbKR/hBpyNR0FOnGFz500Sg9Y4nboStMAz ZtduhPv3ZOPBCxltsrx5H+hTql8vT3TL9/BvWLeWvn7e7jLp6/+HEVpP/omRCUhOFchcMwlWQNEw RwTo04BhIIiBVxT2Rgw50TmwIXPTENFehOUgaOGBJk6T2IlugdZJXZy0CGOKjQXHIl8uSrhXYB3W hOMXJJ74YovBiRekgyV+UlqNpAXGJIQ6MtkDcICJ+NGKgpWY3JD4vXjdcF4qWWSMSI7FDJCKdanD XFNSOZiXV5pZYCiTCPmlJyxeF6CFYHL5JJ9DqsefklH16IWeb4oZJ5J7IacJn43FSCaej7pV5Jk7 tpAlpZcKOGIpjVq55Ze82Vlnl0Z+ameqn64IJavZBaojoZUhxdOm8XW4Jq1J4SRrjhzCOuh/SGTa DLDBctVrBsb/amprUcmC8yyDtt6HV7RNPYrisg9qy6xx1lYln3xOcMvstxvltFyeTOTqYbPIohuk pKRui58E1Ppm7m+I0hmEk5GQG1e+W4lCcK/sPnCvcwLT6m4xAPu1MFHzUpCwdhEDZeDDkV3MaYUH U8exTQ0rNnJmIfPoscbeCptCybGy/BnMJjT4McTAnjzfBTUf5ljMModQ8s4mb5hcMEb/gvTRSifN 9NJON10pLGEK+XTVTV8dS71p9LwQbl5/DXbYYo9N9ilLQhov2WqvfZobXLP6c0D/uswzrnEHJFDF dxe3d4UUC/0zztj1o3fffBtukEGA3y14RYSrvHfjDjVbOOIL/1n+kL2QGy65QtNujnjnCc1TOeY+ m07pQ4ujLnpa7qyOutaWb1p67L3Fzi7stsvOOa667976RIWBvjtvpg9PfPG8M95u8O4dX2zyyhsf +mPST0995MbUjn3m1ZPsfH/fLxq++H2X+Xv3CkZervpAnx9r+TrJP+LL7o9Af5vc3x9J3JWKZLUA vmIo+ZPL/lgnggJm44CeY4MCr8FA3CWQZekrCEcORjcZPJA8FXTJ2zS1PLm9rz4dRIiGPDQqGKEJ RPCJYHqIdiQ/ZdBeEzSPCyWCvAW9jETtAI+eNpYhRdVoZjVU2IE65gHizBARRDPipPhHQwYhzFsu wphklpclz/+sSotcHJUXt/jFLoJxjGIsYxjPSEY0mjGNbFyjulTVRjXKMY50dOMc7VjHO+qRjpr5 F+/YBshACnKQptnT1AiJyEQqklwF/GD2wnKfDWJHZ00MGH8kCQdM3g6SelliUC6kAQwGcYRXoZYn J+m3JEoqQcQiJVM2c0qMxelGKLrTF8fEJSmFMJW7mtL1ULka6hVNTrl0VQy35EgRMgyGsfzknMgX pstl6Ig5mpgyP7kmTXbGY4vCE6q687Yr2W8p2mxDrpq5zEeizxkfnNGTCAaCcu7HbpCsAUagIk+j GAudUCSggM5ZreoUkUfL4icUSZBPAuXuoOchqDXhxtAfJLT/ULmbKL48qC2DRhQRKqmcRRXmHm5p dKMcBeDHPgoyk9IOpSntSOlYajGXMhKmLXVczWgaU5tSjqRLwOm2KOfTnDZEaEEV6ugeNlKeYko6 SFXquI7qrqQ6dakE2Z9Up8qCot4qb1hFh+sadtWurkCr9lEZWfVz1hlYNaxizepTNFbCttogrS84 YFzlas96AM6deB1CYeKxVrqC7K/vIKpgfUhYdXDvl329h+wOucjISnaylK2sZStrzmyeY7GHRetl KgMwtjbWreuD1k07OzvTznS0herGS1GLwAWeFLYSxMZsWasU22aUtsXjreYK6tvengS4uDUKB3fE 2OI+9Rjn/wyu+pwLvnYpVzfXuhl073fd5k7XbeCC4XbfENxsXpehvE2YaL+7ruPA6rzoTa8f7sXe 9rr3D4GKr3znqwfo2Pe++D3LELvJX//mQb/7DXBPxULLwxmYMTsR14Lz2xl/PRjC2kjuhM0A00hd +L2ZveGGuesNXH74ENok0ngf3EgA22/EJPYRLE984fyt18IsDjFFHVbgGm8Bkx7WMYOVUkUfS0Wh NBbyhHRI0RwbGQqadbGSlyyFzyYZynDp2mWvjOUsa3nLXC4keJFMZU5yKMyWrCSZa3rmlaUZpGtW c5tN9uaLxnljc6ZznSF2ZzznOWB75nOfzQLjP0dZ0PUkdP8pDX1oRL9S0YtmtK4c7SxIR1rSzqS0 FS3NJkyjS9NI5DTKPC0yUIda1OYjtQdNHZNAozpKq85Zq5/36snRM9bSeaStaZ2WW6satx9tJ9aS JkCpBXsWw2ZF0X4tNWTv4tjFHpOyacHsZ6sCxFJuYUgsetcPYIYz274igByL63CLe9zkLre5z43u dKv7miqYJv3iaxh3k3beNOqCT7ONMHDuEmh3mSamzqumfWubvZckeL9JNodk4k+Yb4G3jQTuynan jqr0hvjA/83DH6uFaw8lYsXx7b2xIrziLRt5yww+S5oqvIbba/i/N1lyil9O5DJv1cyK3DyYU5vm GW93vF1CRfOxbs/iHFj5CHuOApxLtzg4dfic4E3xDwldtNyxpc9fPhyoU1Xq6+66178O9rCLfexk L7vZz472tKt97WxXagEAADs= ------=_NextPart_000_031A_01C38226.505C4BE0--