Robert A. LaBudde wrote: > > Here is a table of the first few values to make the algorithm easier > to follow: > > HAMMERSLEY SEQUENCE FOR RADIX 2 > > Index Binary Reflection Decimal Die Roll > Count 100 > Average 3.4 > Std Dev 1.71 > > 1 00000001 10000000 0.50000 4 > 2 00000010 01000000 0.25000 2 > 3 00000011 11000000 0.75000 5 > 4 00000100 00100000 0.12500 1 > 5 00000101 10100000 0.62500 4 > 6 00000110 01100000 0.37500 3 > 7 00000111 11100000 0.87500 6 > 8 00001000 00010000 0.06250 1 > 9 00001001 10010000 0.56250 4 > 10 00001010 01010000 0.31250 2 > 11 00001011 11010000 0.81250 5 > 12 00001100 00110000 0.18750 2 > 13 00001101 10110000 0.68750 5 > 14 00001110 01110000 0.43750 3 > 15 00001111 11110000 0.93750 6 > 16 00010000 00001000 0.03125 1 > 17 00010001 10001000 0.53125 4 > 18 00010010 01001000 0.28125 2 > 19 00010011 11001000 0.78125 5 > 20 00010100 00101000 0.15625 1 The distribution may look good, but the sequence doesn't look 'very' random to me. As far as I understand the algorithm: the result is alternating between a digit in group 1..3 and a digit in group 4..6. For example a 6 is always followed by a 1,2 or 3, never by 4,5 or another 6. Is this 'good enough'? Not for a good casino game, I think. Regards, Rob. -- Rob Hamerling, Vianen, NL phone +31-347-322822 homepage: http://www.robh.nl/ -- http://www.piclist.com hint: To leave the PICList mailto:piclist-unsubscribe-request@mitvma.mit.edu