
A Virtual Peripheral Time Clock
Introduction

This application note presents programming techniques for implementing a real time clock that keeps a
16-bit milliseconds count, and has the option for full time clock capabilities, including seconds, minutes, hours,
and days. The routine takes advantage of the SX's internal interrupt feature to allow background operation of the
clock as a virtual peripheral.

How the code works
This firmware module requires no external circuitry (other than an oscillator crystal) and is quite straight

forward. There are three options for code assembly, controlled by the clock_type parameter. If clock_type=0, the
clock only counts milliseconds. A value of clock_type=1 adds seconds, minutes and hours, and a value of
clock_type=2 allows the days to be counted as well.

The timing constant for each millisecond ‘tick’ is determined as follows:

msec tick timing = osc. freq. / (1000 msec/sec * prescaler * mode) where mode=1 (turbo) or =4 (normal)

So, for a crystal frequency of 50 MHz, in turbo mode, with a prescaler of 1, the msec tick timing constant is:

msec tick timing = 50 x 106 / (1000 * 1 * 1) = 50 x 103

By comparing the number of elapsed instructions with the millisecond tick timing, the code decides when
one millisecond has passed and increments the msc_lo and msec_hi counters accordingly. In the same way, if
selected, the code checks the corresponding count and ticks off each second, minute, hour, day, etc.

The time clock’s accuracy is dependent upon the accuracy of the oscillator used, which for crystals is
usually extremely good. For oscillators, especially slower ones, that do not have a frequency in kHz that is
divisible by an integer, the accuracy starts being affected by the msec count timing algorithm, and it should be
adjusted or left out accordingly1.

Modifications and further options

Ideally the circuit and program will provide a method for the user to enter the time and date, etc.,
otherwise it is a relative time count in reference to the last time the circuit was turned on or reset.

If the need for processor power between timed events is minimal, the routine could be modified and set
up in conjunction with the watchdog timer instead of the internal RTCC interrupt where the SX is put in sleep
mode between watchdog time-outs. This allows for a tremendous savings in power consumption.

With some additional programming, day-of-the-week, month, and even year counts could be added, the
month count being somewhat more involved, for obvious reasons.

1 With a 32768Hz watch crystal, for example, this is not the optimal algorithm. The msec count could be dropped and only the
seconds (and larger) counts kept to resolve this issue.

Program Listing

;**
; Software Time Clock
;
;
; Length: 28/50/56 bytes (depending upon clock type, +1 for bank select)
; Author: Craig Webb
; Written: 98/8/17
;
; This program implements a software time clock virtual peripheral
; that keeps a 16 bit count of elapsed time in milliseconds.
; The option is available to include seconds, minutes, hours and even
; days to this clock if desired.
; The code takes advantage of the SX's internal RTCC-driven interrupt
; to operate in the background while the main program loop is executing.
;
;**
;
;****** Assembler directives
;
; uses: SX28AC, 2 pages of program memory, 8 banks of RAM, high speed osc.
; operating in turbo mode, with 8-level stack & extended option reg.
;

DEVICE pins28,pages2,banks8,oschs
DEVICE turbo,stackx,optionx
ID 'TimeClck' ;program ID label
RESET reset_entry ;set reset/boot address

;
;******************************* Program Variables ***************************
;
;****** Program Parameters
;
;clock_type = 0 ;16 bit msec count only
clock_type = 1 ;include sec, min, hours
;clock_type = 2 ;include day counter
;
;****** Program Constants
;
tick_lo = 80 ;50000 = msec instruction count
tick_hi = 195 ; for 50MHz, turbo, prescaler=1
;
int_period = 163 ;period between interrupts
;
mspersec_hi = 1000/256 ;msec per second hi count
mspersec_lo = 1000-(mspersec_hi*256) ;msec per second lo count
;
;****** Register definitions
;

org 8 ;start of program registers
main = $;main bank
;
temp ds 1 ;temporary storage
;

org 010H ;bank0 variables
clock EQU $;clock bank
;
time_base_lo DS 1 ;time base delay (low byte)
time_base_hi DS 1 ;time base delay (high byte)
msec_lo DS 1 ;millisecond count (low)
msec_hi DS 1 ;millisecond count (high)

IF clock_type>0 ;do we want sec, min, hours?
seconds DS 1 ;seconds count
minutes DS 1 ;minutes count
hours DS 1 ;hours count

ENDIF

IF clock_type>1 ;do we want day count?
days DS 1 ;days count

ENDIF
;
;*************************** INTERRUPT VECTOR ******************************
;
; Note: The interrupt code must always originate at 0h.
; A jump vector is not needed if there is no program data that needs
; to be accessed by the IREAD instruction, or if it can all fit into
; the lower half of page 0 with the interrupt routine.
;

ORG 0 ;interrupt always at 0h
; JMP interrupt ;interrupt vector
;
;**************************** INTERRUPT CODE *******************************
;
; Note: Care should be taken to see that any very timing sensitive routines
; (such as adcs, etc.) are placed before other peripherals which has
; varying execution rates (like the software clock, for example).
;
interrupt ;beginning of interrupt code
;
;****** Virtual Peripheral: Time Clock
;
; This routine maintains a real-time clock count (in msec) and allows processing
; of routines which only need to be run once every millisecond.
;
; Input variable(s) : time_base_lo,time_base_hi,msec_lo,msec_hi
; seconds, minutes, hours, days
; Output variable(s) : msec_lo,msec_hi
; seconds, minutes, hours, days
; Variable(s) affected : time_base_lo,time_base_hi,msec_lo,msec_hi
; seconds, minutes, hours, days
; Flag(s) affected :
; Size : 17/39/45 bytes (depending upon clock type)
; + 1 if bank select needed
; Timing (turbo) : [99.9% of time] 14 cycles
; [0.1% of time] 17/39/45 cycles (or less)
; + 1 if bank select needed
;
; BANK clock ;select clock register bank

MOV W,#int_period ;load period between interrupts
ADD time_base_lo,W ;add it to time base
SNC ;skip ahead if no underflow
INC time_base_hi ;yes overflow, adjust high byte
MOV W,#tick_hi ;check for 1 msec click
MOV W,time_base_hi-W ;Is high byte above or equal?
MOV W,#tick_lo ;load instr. count low byte
SNZ ;If hi byte equal, skip ahead
MOV W,time_base_lo-W ;check low byte vs. time base
SC ;skip ahead if low
JMP :done_clock ;If not, end clock routine

:got_tick CLR time_base_hi ;Yes, adjust time_base reg.'s
SUB time_base_lo,#tick_lo ; leaving time remainder
INCSZ msec_lo ;And adjust msec count
DEC msec_hi ; making sure to adjust high
INC msec_hi ; byte as necessary

IF clock_type>0 ;do we want sec, min, hours?
MOV W,#mspersec_hi ;check for 1000 msec (1 sec tick)
MOV W,msec_hi-W ;Is high byte above or equal?
MOV W,#mspersec_lo ;load #1000 low byte
SNZ ;If hi byte equal, skip ahead
MOV W,msec_lo-W ;check low byte vs. msec count
SC ;skip ahead if low

JMP :done_clock ;If not, end clock routine
INC seconds ;increment seconds count
CLR msec_lo ;clear msec counters
CLR msec_hi ;
MOV W,#60 ;60 seconds per minute
MOV W,seconds-W ;are we at minute tick yet
JNZ :done_clock ;if not, jump
INC minutes ;increment minutes count
CLR seconds ;clear seconds count
MOV W,#60 ;60 minutes/hour
MOV W,minutes-W ;are we at hour tick yet?
JNZ :done_clock ;if not, jump
INC hours ;increment hours count
CLR minutes ;clear minutes count
ENDIF ;<if> we wanted sec, min, hours

IF clock_type>1 ;do we want to count days?
MOV W,#24 ;24 hours per day
MOV W,hours-W ;are we at midnight?
JNZ :done_clock ;if not, jump
INC days ;increment days count
CLR hours ;clear hours count
ENDIF ;<if> we wanted day count

:done_clock
;
done_int mov w,#-int_period ;interrupt every 'int_period' clocks

retiw ;exit interrupt
;
;****** End of interrupt sequence
;
;************************** RESET ENTRY POINT *****************************
;
reset_entry
; PAGE start ;Set page bits and then
; JMP start ; jump to start of code
;
;*********************
;* Main Program Code *
;*********************
;
start
; mov !rb,#%00001111 ;Set RB in/out directions

CLR FSR ;reset all ram starting at 08h
:zero_ram SB FSR.4 ;are we on low half of bank?

SETB FSR.3 ;If so, don't touch regs 0-7
CLR IND ;clear using indirect addressing
IJNZ FSR,:zero_ram ;repeat until done

MOV !OPTION,#%10011111 ;enable rtcc interrupt
;
; Main loop
;
:loop
; BANK Clock ;set clock bank
;
; <main program code goes here>
;

JMP :loop ;back to main loop
;
;***************

END ;End of program code

