YN
SCENIX
A Virtual Peripheral Time Clock

| ntroduction

This application note presents programming techniques for implementing areal time clock that keeps a
16-hit milliseconds count, and has the option for full time clock capabilities, including seconds, minutes, hours,
and days. The routine takes advantage of the SX'sinternal interrupt feature to alow background operation of the
clock asavirtua peripheral.

How the code works

This firmware module requires no external circuitry (other than an oscillator crystal) and is quite straight
forward. There are three options for code assembly, controlled by the clock _type parameter. If clock type=0, the
clock only counts milliseconds. A vaue of clock type=1 adds seconds, minutes and hours, and a value of
clock type=2 allows the days to be counted as well.

The timing constant for each millisecond ‘tick’ is determined as follows:
msec tick timing = osc. freq. / (1000 msec/sec * prescaer * mode) where mode=1 (turbo) or =4 (normal)
So, for a crystal frequency of 50 MHz, in turbo mode, with a prescaler of 1, the msec tick timing constant is:
msec tick timing = 50 x 10°/ (1000 * 1* 1) = 50 x 10°

By comparing the number of elapsed instructions with the millisecond tick timing, the code decides when
one millisecond has passed and increments the msc_|o and msec_hi counters accordingly. In the same way, if
selected, the code checks the corresponding count and ticks off each second, minute, hour, day, etc.

The time clock’ s accuracy is dependent upon the accuracy of the oscillator used, which for crystalsis
usually extremely good. For oscillators, especially slower ones, that do not have afrequency in kHz that is
divisible by an integer, the accuracy starts being affected by the msec count timing algorithm, and it should be
adjusted or left out accordingly?.

M odifications and further options

Ideally the circuit and program will provide a method for the user to enter the time and date, etc.,
otherwise it is arelative time count in reference to the last time the circuit was turned on or reset.

If the need for processor power between timed events is minimal, the routine could be modified and set
up in conjunction with the watchdog timer instead of the internal RTCC interrupt where the SX is put in sleep
mode between watchdog time-outs. This allows for a tremendous savings in power consumption.

With some additional programming, day-of-the-week, month, and even year counts could be added, the
month count being somewhat more involved, for obvious reasons.

1 With a 32768Hz watch crystal, for example, this is not the optimal algorithm. The msec count could be dropped and only the
seconds (and larger) counts kept to resolve this issue.

Program Listing

R R Ik I kO R I kR O O

Software Tine C ock

Lengt h: 28/50/56 bytes (dependi ng upon clock type, +1 for bank sel ect)
Aut hor: Craig Webb
Witten: 98/8/17

This programinplenents a software time clock virtual peripheral

that keeps a 16 bit count of elapsed time in milliseconds.

The option is available to include seconds, m nutes, hours and even
days to this clock if desired.

The code takes advantage of the SX's internal RTCC-driven interrupt
to operate in the background while the main program | oop is executing.

EE R R R R R R R R R R I I I I I I I I I I I I I I I I I R I I I I I O
*xxxx% Assenbl er directives

uses: SX28AC, 2 pages of program nenory, 8 banks of RAM high speed osc.
operating in turbo node, with 8-level stack & extended option reg.

DEVI CE pins28, pages?2, banks8, oschs

DEVI CE turbo, st ackx, opti onx

1D " Ti med ck' ;program | D | abel

RESET reset_entry ;set reset/boot address

EEE R Ik I I I I kR R Program Varl abl es R Sk I O S kO

;¥****% Program Paraneters

;clock_type = 0 ;16 bit msec count only
cl ock_type = 1 include sec, mn, hours
;clock_type = 2 ;include day counter

; **x*%* Program Const ants

tick_lo = 80 : 50000 = nsec instruction count
tick_hi = 195 ; for 50MHz, turbo, prescaler=1
i nt _period = 163 ;period between interrupts
’rrspersec_hi 1000/ 256 ;meec per second hi count

nspersec_l o 1000- (mspersec_hi *256) ; nsec per second | o count

1

;****xx Register definitions

org 8 ;start of programregisters
mai n = $;mai n bank
ienp ds 1 ;tenporary storage
’ org 010H : bankO vari abl es
cl ock EQU $;cl ock bank

time_base_lo DS 1 ;tinme base delay (low byte)
ti me_base_hi DS 1 ;tinme base delay (high byte)
nsec_| o DS 1 ;mllisecond count (I ow)
nsec_hi DS 1 ;mllisecond count (high)

I F cl ock_type>0 :do we want sec, mn, hours?
seconds DS 1 : seconds count
nm nut es DS 1 :m nut es count

hour s DS 1 : hours count

ENDI F

I F cl ock_type>1 ;do we want day count?
days DS 1 ; days count
ENDI F
EZE R R R I I Ik kS INTERRUPT VEC‘I’m EZR R R R R Ik Sk

Note: The interrupt code nust always originate at Oh.
A junp vector is not needed if there is no program data that needs
to be accessed by the |READ instruction, or if it can all fit into
the lower half of page O with the interrupt routine.

ORG 0 ;interrupt always at Oh
JMWP i nterrupt ;interrupt vector
IR R R R R R Sk INTERRUPT CODE*******************************

Not e: Care should be taken to see that any very timing sensitive routines
(such as adcs, etc.) are placed before other peripherals which has
varying execution rates (like the software clock, for exanple).

nt err upt ; begi nning of interrupt code
;¥***%% \firtual Peripheral: Time C ock

This routine maintains a real-time clock count (in nsec) and all ows processing
of routines which only need to be run once every nmillisecond.

; Input variable(s) : tine_base_|lo,tinme_base_hi, nsec_| o, nsec_hi
; seconds, m nutes, hours, days
; Qut put variable(s) : nsec_l o, nsec_hi
; seconds, m nutes, hours, days
; Variabl e(s) affected : tinme_base_| o,time_base_hi, nsec_| o, nsec_hi
; seconds, m nutes, hours, days
; Fl ag(s) affected :

; Size : 17/ 39/ 45 bytes (dependi ng upon cl ock type)

: + 1 if bank sel ect needed

; Timng (turbo) : [99.9%of tine] 14 cycles

; [0.1% of tine] 17/39/45 cycles (or |ess)

: + 1 if bank sel ect needed

BANK cl ock ;select clock register bank
MOV W #i nt _period ;1 oad period between interrupts
ADD time_base_lo, W ;add it to tine base
SNC ;skip ahead if no underfl ow
I NC ti me_base_hi ;yes overflow, adjust high byte
MOV W #ti ck_hi :check for 1 nsec click
MOV Wtine_base_hi-W ;1s high byte above or equal ?
MOV W#tick_lo ;load instr. count |ow byte
SNz ;1f hi byte equal, skip ahead
MOV Wtine_base_| o-W ;check low byte vs. tinme base
SC ;skip ahead if |ow
JMP :done_cl ock 1 f not, end clock routine

;got _tick CLR ti me_base_hi ;Yes, adjust tinme_base reg.'s
SUB time_base_lo,#tick _lo ; leaving tine reminder
INCSZ nsec_lo ; And adj ust nsec count
DEC nsec_hi ; making sure to adjust high
I NC nsec_hi ; byte as necessary
I F cl ock_type>0 ;do we want sec, mn, hours?
MOV W #nmsper sec_hi ;check for 1000 nmsec (1 sec tick)
MOV W nsec_hi -W ;1s high byte above or equal ?
MOV W #nmspersec_| o ;1 oad #1000 | ow byte
SNz ;1f hi byte equal, skip ahead
MOV W nsec_| o-W ;check | ow byte vs. nsec count

SC ;skip ahead if |ow

INZ
I NC
CLR
MOV
MOV
INZ
I NC
CLR
ENDI F

I F
MOV
MOV
JINZ

I NC
CLR
ENDI F

done_cl ock

done_i nt nov

1
1
1
1
1
r

1
1
1
1
1
1
1

retiw

BRI O I R Rk R R

eset _entry
PAGE
JMP

B I O I R Rk b kO

;* Main Program Code *

B I O I R R kO O

start

; nov
CLR

:zero_ram SB
SETB
CLR
1 INZ
MoV

; Mai n | oop

;Ioop

; BANK

1
1
1
1

:done_cl ock
seconds
nsec_l o
nsec_hi

W #60

W seconds- W
:done_cl ock
n nut es
seconds

W #60

W m nut es-W
:done_cl ock
hour s

n nut es

cl ock_type>1
W #24

W hour s-W
:done_cl ock
days

hour s

w, #-int_period

;***xxx End of interrupt sequence

start
start

I'rb, #©0001111

FSR

FSR. 4

FSR. 3

| ND
FSR, : zero_ram

1 OPTI ON, #940011111

Cl ock

<mai n program code goes here>

JwP

R R I S O

END

;1 oop

1 f not, end clock routine
i ncrenent seconds count
cl ear nsec counters

60 seconds per mnute
are we at minute tick yet
if not, junp

i ncrenent m nutes count
cl ear seconds count

60 mi nut es/ hour

are we at hour tick yet?
if not, junp

i ncrenent hours count

cl ear m nutes count

<if> we wanted sec, nin, hours

do we want to count days?
24 hours per day

are we at m dni ght?

if not, junp

i ncrement days count

cl ear hours count

<if> we wanted day count

interrupt every
exit interrupt

i nt_period clocks

RESET ENTRY PO NT R R b O O O S kO

; Set page bits and then
; junp to start of code

:Set RB in/out directions

;reset all ramstarting at 08h
;are we on | ow half of bank?

;1f so, don't touch regs 0-7
;clear using indirect addressing
;repeat until done

;enable rtcc interrupt

:set clock bank

;back to main | oop

; End of program code

