### World's Smallest Low-speed USB Analyzer (Atapchi)

Idea is dead without a good application for it. So "California Dreamin" USB virtual peripheral could be a very nice sample of academic research, but hardly anybody is going to build a keyboard or mouse using it. I have been thinking for a while what to do with it as well. First project that came to my mind was building a hardware key logger for USB keyboards, something like www.keyghost.com, built for PS2 protocol using PIC16F877. It was quite simple to implement USB part using SX, serial EEPROM and a few switching IC's. Furthermore I found out that built-in features of SX MCU would help to create a device able to work not only with pure low-speed USB keyboards, but also composite, built-in-hub, things, hence covering all existing systems (SUN, Mac, PC). Recording keystrokes is fun, but if we can do that, why not go further and try to record all low-speed USB traffic. No problem for SX again, problem for the memory. Serial EEPROM is just to slow to handle it. Solution was www.ramtron.com FRAM with 1MHz two-wire interface (let me pay credit here to www.svtehs.com, who happens to advertise Finally "California Dreamin" found a real life application in the world's it). smallest low-speed USB analyzer "Atapchi" (stands for a small fruit in Singapore, tastes like apricot). I hope you find this project interesting (mail your questions to chinook@pacific.net.sg)

#### **Atapchi Features**

- 1) Full support for low-speed USB specifications
- 2) 500 transactions capacity in non-volatile memory
- 3) Signal quality checking
- 4) CRC match checking
- 5) Bit stuffing checking
- 6) Data overflow checking
- One device dedicate capturing
- 8) External triggering
- 9) Bus powered



# Atapchi Applications

- 1) Development of HID class low-speed USB peripheral devices
- 2) Development of small scale USB based networks

The list of MCUs you can use with Atapchi (not full)

- Cypress: CY7C630/1XX, CY7C3X/5XX, CY7C636XX, CY7C632XXA, CY7C637XX
- Microchip: PIC16C745, PIC16C765, PIC16F747, PIC16F767, PIC16F745, PIC16F765
- Motorola: MC68HC908BD48, MC68HC08JB1, MC68HC908JB8, MC68HC05JB3, MC68HC05JB4
- ST: ST7261X, ST7262X, ST7263

## Atapchi Architecture

- 1) Ubicom SX48BD/TQ micro controller with 100% software implementation of USB (improved version of "California Dreamin")
- 2) Ramtron FM24C64-S 64Kb FRAM Serial Memory with 1MHz two wire interface
- 3) Murata CSTCW5000MX03-T 50 MHz small footprint ceramic resonator
- 4) Switching circuits (other manufacturers)
- 5) No USB interface (Atapchi is to be used with USB repeaters)

### Atapchi Modes of Operation

Input, recording low-speed USB traffic. Atapchi is plugged into a USB selfpowered hub, a USB repeater is plugged into Atapchi, device under development is plugged into the repeater. All traffic from/to the device is recorded.



Output, downloading the data. Atapchi is plugged into a USB repeater, the repeater is plugged into a self-powered hub. Atapchi enumerates as a generic USB keyboard and types memory content into any text editor.



# Atapchi Output Listing

Device is the mouse you see on the picture above (Justy UMN-05 SG). MCU used is omnipresent Cypress CY7C63001A. Total listing length is 1083 lines.

| reset |                                         |      | 001                                     |
|-------|-----------------------------------------|------|-----------------------------------------|
|       | 0.00                                    | 0012 |                                         |
|       | eop 060                                 | 0013 | 00 0 in                                 |
| 0001  | 00 0 setup                              | 0014 | data1 [ 00 00 ] zero-length             |
| 0002  | data0 [ bb 29 ] 80 06 00 01 00 00 40 00 | 0015 | ack                                     |
| 0003  | ack                                     |      |                                         |
|       |                                         |      | eop 014                                 |
|       | eop 001                                 | 0016 | 050 setup                               |
| 0004  | 00 0 in                                 | 0017 | data0 [ 07 2f ] 80 06 00 01 00 00 12 00 |
| 0005  | data1 [ c8 e7 ] 12 01 00 01 00 00 00 08 | 0018 | ack                                     |
| 0005  | ack                                     | 0010 | ack                                     |
| 0000  | dek                                     |      | acr 001                                 |
|       | 002                                     | 0010 |                                         |
|       | eop 002                                 | 0019 | 05 0 in                                 |
| 0007  | 00 0 out                                | 0020 | data1 [ c8 e7 ] 12 01 00 01 00 00 00 08 |
| 0008  | data1 [ 00 00 ] zero-length             | 0021 | ack                                     |
| 0009  | ack                                     |      |                                         |
|       |                                         |      | eop 001                                 |
| reset |                                         | 0022 | 05 0 in                                 |
|       |                                         | 0023 | data0 [ 7e 33 ] 58 04 03 00 00 00 01 02 |
|       | eon ()43                                | 0024 | ack                                     |
| 0010  |                                         | 0024 | dek                                     |
| 0010  |                                         |      |                                         |
| 0011  |                                         |      |                                         |
| 0012  | ack                                     |      |                                         |
|       |                                         |      |                                         |