
A Virtual Peripheral ADC: Using Bitstream A-to-D Conversion

Introduction
This application note presents programming techniques for reading an external voltage by employing

bitstream continuous calibration in order to create a simple, inexpensive 8-bit1 analog to digital converter with an
input range of 0-5V. This implementation uses the SX's internal interrupt feature to allow background operation
of the code as a virtual peripheral, and uses the Parallax demo board, taking advantage of Parallax' SX demo
software user interface and UART features to allow the SX to communicate simply and directly with a personal
computer via a serial RS232C port.

Figure 1 - Parallax demo board ADC/PWM circuit diagram

How the circuit and program work
The circuit is a simple resistor capacitor network on each adc port pin (see figure 1). Essentially, the

program code calculates the charge vs. discharge rates of the capacitor, according to the voltage (0-5V) applied
to the corresponding adc input. Port pins RC.5 and RC.7 are both inputs which trigger when the capacitor is half
charged. This is because, using mode register function 0Dh in the initialization section of the main program code,
port pin input and outputs on port RC are set CMOS levels.

The interrupt code segment uses the bitstream continuous calibration approach to calculate the capacitor
charge/discharge timing. The method is a rather unique one, which uses one port to monitor the capacitor level,
and another as an output to charge and discharge the capacitor to keep it hovering at the input trigger level. The
charging and discharging times depend on the voltage being applied to the corresponding adc input, and hence by
measuring the charge time vs. (charge + discharge) time ratio, we can determine the voltage present at the adc

                                                       
1The actual resolution of the adc(s) may be less than 8-bit depending upon background noise levels in the circuit.



input. The resolution of such a method is proportional to the calibration frequency, and due to circuit noise, the
last few bits ( + 1 or 2 LSB's) must usually be thrown away.

Using adco as our example, the adc routine keeps count in the adc0_acc register of the number of times
the adc input (port pin RC.5) is triggered high during 256 passes through the interrupt (the count of the number
of passes being kept in the adc0_count register). The ratio of these two values gives the proportion of Vcc
present at the adc0 input.

adc0_acc / adc0_count  =  Vadc0_nput / Vdd

In this implementation, a sample is taken as soon as adc0_count rolls over from 255 to 0, whereupon the
value contained in adc0_acc is copied to adc0. This value, ranging from 0-255*, directly corresponds to an input
voltage of 0-5 volts, with a value of 0 representing 0 volts and a value of 0FFh representing 5V. It should be
noted that with no input voltage present the input floats around (or very near to) a value of 7Fh, though slight
offsets may result due to variations between what should be equal values for the resistors R3 and R4.

The resistor capacitor combination shown allows sampling of the incoming signal by the bitstream
continuous calibration method described above, yet it also draws current from the input source in order to
maintain the calibration at 0.5Vdd. The effect of this is equivalent to having the input source connected through
R4 (in this case a 10kΩ resistor) to 2.5 volts, so current drain considerations on the input source should be kept
in mind.

For adc0, SX port pin RC.6 is essentially acting like a auto-calibrating pulse width modulation output
which keeps the capacitor at 0.5Vcc using real-time feedback from port pin RC.7. This method for analog to
digital conversion is effective for inputs whose highest frequency component is lower than half2 of the lowest
frequency component of the calibrating pwm signal. The length of the pwm cycle varies, depending upon the
voltage of the input, but the worst case is a pwm that toggles only once every 256 interrupt passes3. We can
calculate the period between interrupt passes as follows:

period (sec)  =  mode * prescaler * RETIW value** / osc. frequency,    where mode=1 (turbo)  or  =4  (normal)

So, for the worst case of 256 interrupt passes, at a crystal frequency of 50 MHz, in turbo mode, with a prescaler
of 1, and with an RETIW value of 163, the lowest frequency present in the pwm signal is:

frequencypwm_min   =   1 / period * 256  =   50 MHz / (1 * 1 * 163 * 256 )  =  1.2 kHz

                                                       
*Note: the original SX demo code erroneously returns an adc value of 0 for input voltages ≥ Vdd
2Due to Nyquist's theorem, useful information can only be obtained for frequencies ≤ half of the sampling (or, in this case, the
calibration) frequency.
3With an input voltage just under 5 volts, the pwm calibration output will only toggle high for 1 out of every 256 interrupt passes.
With the input at (or over) 5 volts, the calibration output will remain low. For an input voltage slightly over 0 volts, the pwm
calibration output will toggle low only 1 of every 256 passes, and with the input at (or below) 0V, the calibration output will remain
high.
**The interrupt is triggered each time the RTCC rolls over (counts past 255 and restarts at 0). By loading the OPTION register with
the appropriate value, the RTCC count rate is set to some division of the oscillator frequency (in this case they are equal), which is
the external 50 MHz crystal in this case. At the close of the interrupt sequence, a predefined value is loaded into the W register using
the RETIW instruction, which determines the period of the interrupt in RTCC cycles.



By this we can see that the adc will be able to monitor signals at or below4 fadc_max = 1.2kHz / 2 = 600
Hz. At frequencies above5 this, not only will the adc begin to provide inaccurate information, but there will also
be an increasing current drain on the incoming signal as the impedance to ground of the RC combination
decreases.

Since timing is critical for accurate readings, all efforts should be made to make sure that any code
executed in the interrupt prior to the adc code section maintains a uniform execution rate at all times. This can be
done by placing it before any varying-execution-rate, state-dependent code (it should always come before the
UART, for instance).

Modifications and further options
The Parallax demo board is designed so that port pins pwm0 and pwm1 can be swapped for adc's simply

by adjusting the program code to remove the pwm interrupt section, adding code to the :adcs section such that
adc2 and adc3 use port RC pins for pwm0 and pwm1, respectively, and by adjusting the register definitions
appropriately. An example of the code follows:

analog = $ ;adc bank
;
port_buff ds 1 ;buffer - used by all
adc0 ds 1 ;adc0 - value
adc0_acc ds 1 ;     - accumulator
adc1 ds 1 ;adc1 - value
adc1_acc ds 1 ;     - accumulator
adc2 ds 1 ;adc2 - value
adc2_acc ds 1 ;     - accumulator
adc3 ds 1 ;adc3 - value
adc3_acc ds 1 ;     - accumulator
adc_count ds 1 ;adc calibration count
...
;
;  <all pwm code removed>
;
:adcs MOV W,>>RC ;get current status of adc's

NOT W ;complement inputs to outputs
AND W,#%01010000 ;keep only adc0 & adc1
OR port_buff,W ;store new value into buffer
MOV RC,port_buff ;update cap. discharge pins

:adc0 SB port_buff.4 ;check if adc0 triggered?
INCSZ adc0_acc ;if so, increment accumulator
INC adc0_acc ; and prevent overflowing
DEC adc0_acc ; by skipping second 'INC'

:adc1 SB port_buff.6 ;check if adc1 triggered
INCSZ adc1_acc ;if so, increment accumulator
INC adc1_acc ; and prevent overflowing
DEC adc1_acc ; by skipping second 'INC'

:adc2 SB port_buff.0 ;check if adc2 triggered

                                                       
4In practice, even signals at or near this frequency will not sample with 8 bits of resolution.
5For signals that vary within a minimal range about the 1/2Vdd calibration point, higher frequencies may be successfully monitored.



INCSZ adc1_acc ;if so, increment accumulator
INC adc1_acc ; and prevent overflowing
DEC adc1_acc ; by skipping second 'INC'

:adc3 SB port_buff.2 ;check if adc3 triggered
INCSZ adc1_acc ;if so, increment accumulator
INC adc1_acc ; and prevent overflowing
DEC adc1_acc ; by skipping second 'INC'

INC adc_count ;adjust adc's timing count
JNZ :done_adcs ;if not, jump ahead
MOV adc0,adc0_acc ;update adc0
MOV adc1,adc1_acc ;update adc1
MOV adc2,adc2_acc ;update adc2
MOV adc3,adc3_acc ;update adc3
CLR adc0_acc ;reset adc0 accumulator
CLR adc1_acc ;reset adc1 accumulator
CLR adc2_acc ;reset adc2 accumulator
CLR adc3_acc ;reset adc3 accumulator

:done_adcs
...


