
SXCheck Version 1.02

General Notes

This program is donated to the public domain, it may be freely distributed without charge.

Neither the author nor the author’s company make any warranties that the program is free of errors, or
that it is suitable for a specific purpose.

The author would be thankful to receive any error reports, comments, and hints for improvements.
Please send a piece of sample code together with your comments whenever possible.

Happy “SXing”,

Guenther Daubach
MDA EDV-Beratung GmbH
Im Eulenflug 25
D-51399 Burscheid, Germany
Tel./Fax: +49 2174 – 785 931
email: g.daubach@mda-burscheid.de
Home: www.g-daubach.com

Why did I Write SXCheck?

When writing programs for the SX microcontroller in Assembly, a common mistake made by many
programmers (including myself) is to forget the hash mark in front of a constant, e.g.:

 mov w, $10

instead of correctly mov w, #$10

or mov w, InitValue

instead of correctly mov w, #InitValue

When the leading hash sign is missing, the Assembler assumes that the contents of the register at
address $10 or the contents of the register whose address is specified with the symbolic name “Init-
Value” shall be copied into w.

With the leading hash sign, the Assembler generates code that moves the constant value of $10, or
the constant value that is assigned to the symbolic name “InitValue” into w.

Another mistake (at least I make sometimes) is messing up bit and byte instructions, like typing

 add Counter, ra.0

instead of correctly addb Counter, ra.0

Earlier versions of SX assemblers did not generate an error or warning for such typea of errors, where
newer versions do. Nevertheless, I though it might be handy to add some checking for Bits and Bytes
to SXCheck as well. More about this later in this document.

Another pitfall are skip instructions followed by a “compound instruction” such as

sz
mov fr1, fr2

On the first glance, one might assume that the mov instruction is skipped in case the Zero flag is set.
Actually, the SX does not “know” an instruction that directly copies the contents of one register into
another register. The assembler generates two instructions instead:

sz
mov w, fr2
mov fr1, w

Now it is clear that the sz instruction does not perform as assumed. Instead, it only skips the mow w,
fr2 instruction, and fr1 will be loaded with some arbitrary value contained in w.

In this version, I have added an option that allows to check for skip instructions followed by compound
instructions.

One more mistake that can be easily made is accessing a register that is not located in the current
bank. This version has an option to track the current bank, and generate a warning when a variable is
accessed that is not defined in the current bank. As SXCheck does not (and cannot) follow the real
program flow, i.e. performing jumps, and subroutine calls, it goes through the program code from top
to bottom. More about this later in this document.

Setting up SXCheck

When developing this application, I only had a German version of MS Visual Basic available. There-
fore, the Setup dialog language is German.

Here are the required steps for installation:

Open the folder to where you have unzipped the downloaded files, and double-click Setup.exe to start.

In the welcome screen that shows up after a short while, click the left Ok button to continue. I suggest
that you use the defaults for the further install options. If you need to change the default installation
path by some reason, click the “Verzeichnis wechseln” button to open the standard windows file select
box and enter another path there.

Then click the large button showing a computer and a diskette box to accept the installation path (ei-
ther the default or the path you have entered).

The next dialog is used to select a program group for the start menu. Click the left “Weiter” button to
continue.

The installation process then begins, and after completion a final dialog box is shown. Click the OK
button to finish.

In the Windows Start menu, you should find a new program group “SXCheck” now, and in this group
there is a link to launch SXCheck.

Running SXCheck

Start the program from the Windows Start menu. First, a file select box will open that allows you to
navigate to a folder, where an SX assembly source code (.SRC) file is located, and select a file name.

After you have selected a file, select the check options you like, and click the “Check” button.
SXCheck immediately starts processing the file, and shows the results in a list box.

Click the “Select File” button in order to select another file, or the “Check” button in order to check the
same file again after you have selected other options, or changed and saved the file with the SX-Key
IDE or another text editor program. Note that SXCheck opens the SRC file in non-shared, read-only
mode. This means that it does not make any changes to the original SRC file. On the other hand,
depending on what text editor you use, it might be necessary to close the editor before running

SXCheck in case the text editor keeps the file open because SXCheck would terminate with an error
(can’t open the file).

Click the “Exit” button to leave SXCheck.

How SXCheck Works

SXCheck performs two passes through the code to be checked. During the first pass, it collects the
information about variables, constants, and bit definitions, and saves them in a symbol table. Here are
some examples:

InitVal = $10

or

InitVal EQU $10

cause that “InitVal” is stored in the table, as type “Constant”

Counter DS 1

causes that “Counter” is stored in the table, as type “Variable”

TxTPin = ra.0

causes that “TxDPin” is stored in the table, as type “Bit”

When SXCheck finds code like this

InitVal1 = $10
InitVal2 = InitVal1

when processing “InitVal2”, it first searches the symbol table for “InitVal1”, and assigns the type of
“InitVal1” to the type of “InitVal2” (Constant in this example) and saves it in the symbol table as well.

Warnings generated by SXCheck

When SXCheck detects “suspicious” code, it adds a warning like this to the displayed list box:

Line 77: 2nd OP is a constant w/o leading ‘#’
 cje DOWN, 0, next_bit

The first line specifies the line number in the source code file, together with a warning message. Here
the warning means that the second operand (the 0) seems to be a constant, but has no leading hash
mark.

In the next line, the original code line is shown.

The following warnings may be generated:

2nd OP is a constant w/o leading '#'

This warning will be generated together with ADD, AND, OR, SUB, XOR, MOV, CJA, CJAE, CJB,
CJBE, CJE, CJNE, CSA, CSAE, CSB, CSBE, CSE, or CSNE instructions when the second operand is
either a numeric constant (decimal, binary, or hex), or when the second operand is a symbolic name
that has been specified as a constant, e.g.

mov w, 10

or

InitVal = $10

mov w, InitVal

will cause such warnings.

2nd OP is a variable

This warning will be generated together with ADD, AND, OR, SUB, XOR, MOV, CJA, CJAE, CJB,
CJBE, CJE, CJNE, CSA, CSAE, CSB, CSBE, CSE, or CSNE instructions when the second operand is
a symbolic name that has been specified as a variable, e.g.

 org $08
Temp DS 1

mov w, #Temp

will cause such warning. In the first pass, SXCheck has detected that “Temp” is a symbolic name for
the register at $08, and saved it as type “Variable” in the symbol table.

In the mov instruction, a leading hash mark before the symbolic name is found which means that the
Assembler would mov the address of “Temp” into w but not the contents of “Temp”. Sometimes, this
may be what the programmer wants to do, e.g. when setting up for indirect addressing. This is why
SXCheck generates “Warnings” only, but no “Errors”.

Important Note:

Some programmers use the following syntax to specify and use variables:

Temp EQU $08

mov w, Temp

This causes the Assembler to generate code which moves the contents of “Temp” into w, and this
might be actually what the programmer intended to do. SXCheck, on the other hand, considers that
“Temp” is a constant because it was defined together with an EQU directive, and therefore will gener-
ate a warning like “2nd OP is a constant w/o leading ‘#’”. Therefore, you better use the DS directive to
define space for variables instead of “EQU” or “=” to define the addresses of variables, although this is
not incorrect.

2nd OP is a bit

This warning will be generated together with ADD, AND, OR, SUB, XOR, MOV, CJA, CJAE, CJB,
CJBE, CJE, CJNE, CSA, CSAE, CSB, CSBE, CSE, or CSNE instructions when the second operand is
the symbolic name of a bit, like in

TxDPin = RA.0

mov w, TxDPin

1st OP is not a bit

This warning will be generated together with CLRB, SETB, JB, JNB, SB, or SNB instructions when the
operand is not a bit, like in

 ORG $08
Flags DS 1
Done = Flags.0

clrb Flags ; causes a warning
clrb Flags.0 ; is OK
clrb Done ; is OK

This warning will also be issued together with MOVB instructions, when the first (target) operand is not
a bit.

2nd OP is not a bit

This warning will be generated together with ADDB, and SUBB instructions, when the second operand
is not a bit like in

InPort = rb
CountPin = InPort.0

 ORG $08
Counter DS 1

addb Counter, InPort ; causes a warning
addb Counter, InPort.0 ; is OK
addb Counter, CountPin ; is OK

This warning will also be issued together with MOVB instructions, when the second (source) operand
is not a bit.

When the “Check Skips” option is active, the following warning might be displayed:

A skip is followed by a compound instruction

This warning indicates that SXCheck has found two subsequent instructions where the first one is a
skip instruction, and the second one a compound instruction, such as

sz
mov fr1, fr2

which is actually assembled into

sz
mov w, fr2
mov fr1, w

i.e. the sz only skips the mov w, fr2 instruction in case the Zero flag is set but not the second mov fr1,
w instruction leading to unpredictable results.

When the “Check Banks” option is active, the following warning might be displayed:

<Variable> may not be located in current bank

When SXCheck analyzes a source code file, it reads the file from top to bottom. Whenever it finds a
BANK instruction, it saves the value following the BANK instruction into an internal “Current Bank”
variable. Whenever it finds an instruction that has a previously defined by a <Variable> DS <Size>
directive, it checks if the bank of that variable matches the “Current “Bank”. If this is not the case, a
warning is issued.

In most cases, such warnings can be ignored because due to the actual program flow, the SX-internal
“current bank” might be setup correctly, e.g. because a BANK instruction was executed in a subroutine
before, or in some other part of the code before jumping to another code section.

Nevertheless, it is a good idea to double-check the correct bank settings because if this is not the
case, other variables are overwritten, and such bugs are really hard to localize.

What SXCheck can and cannot do

As described before, SXCheck makes certain assumptions concerning what symbols name variables,
constants, and bits, that base upon common SX coding style, but it my not always detect “suspicious”
code on one hand, and on the other hand it may generate warning messages on code lines that per-
form exactly as intended.

SXCheck cannot evaluate expressions, i.e. constructs like

TableEnd EQU TableStart + TableLen - 1

SXCheck can only handle EQU, and = directives followed by constant values.

As mentioned in the previous chapter, SXCheck does not follow the program flow, which is impossible
because it may depend on states of input lines, and many other factors. Therefore, the “Check Banks”
option may generate a bunch of warnings that not really indicate bugs in the code.

Therefore, SXCheck is not the right tool to convert bad code into good one, it is just an aid to inspect
your code, and I hope it will helpful when you have trouble with some piece of code.

Of course, the best situation is when SXCheck’s list box only shows the message:

"No warnings to report”.

But be careful, this only means that SXCheck has no problems found, like the following story will tell
you:

Once, two programming errors met in a program. The first one said: “My programmer is trying to fix me
since a week”, and the second one said: “Ha, may programmer does not even know that I exist!”

Good luck, and have fun,

Guenther

