
© 2000 Ubicom, Inc. All rights reserved. - 1 -

Ubicom™ and the Ubicom logo are trademarks of Ubicom, Inc.
All other trademarks mentioned in this document are property of their respec-
tive componies.
Application Note 37

Wing Poon
Deon Roelofse

October 2000
Web Server & Send Email Client
Implementation with Ethernet as the
Physical Layer
1.0 Introduction
This Application Note describes the implementation of a
TCP/IP networking stack on the SX52BD communica-
tions controller. Ubicom has created an evaluation kit for
demonstrating the Ubicom Internet connectivity network-
ing stack. The kit contains a demonstration/evaluation
board, the SX source code, and documentation on how
to use/customize the stack using the built-in Application
Programming Interface (API).

For information on setting up and running the Ethernet
SX-Stack demo board, please refer to the Ethernet SX-
Stack Board User’s Guide.

2.0 Quick Tutorial on Internet Networking
The transfer of data between remote computers or more
commonly from applications on computers to applica-
tions on remote computers over the internet is done with
the use of communication protocols. A suite of network
communication protocols have been developed by the
internet community and there are forever new additions
to this list. Communication protocols are sets of rules that
governs how data are transferred as well as how it
should be interpreted. Most network communication pro-
tocols are defined in documents called RFCs (Request
For Comments), for example, RFC793 defines the TCP
protocol.

2.1 Network Communications Terminology
Network protocols are defined and developed by a huge
number of different programmers and organizations
worldwide. There are a lot of conflicting terms in which
the workings of networking communications are
described. Sometimes two different terms may be used
to refer to the same thing. Due to the enormous amount
of confusion that is sometimes caused, a short list of
terms used in this application note and the specific mean-
ing thereof is in order:

communications protocol - a set of rules of how com-
munications pertaining to a specific protocol should be
handled and interpreted.

network protocols - used to refer to a collection of com-
munications protocols used to perform network commu-
nications. Commonly called a network device’s TCP/IP
stack.

network device - used to refer to any electrical device
connected to a network we are talking about, able to
communicate with other network devices through the use
of the network protocols. May be a PC or the Ethernet
SX-Stack demo board.

NIC device driver - a distinct piece of software consist-
ing of function calls and variables that is used by network
protocols to control the Ethernet controller on a network
device.

local - used to refer to communications at the demo
board or network device and software under discussion
such as a local port or a local server.

remote - used to refer to a physically removed network
device or the communications thereof. Always used in
the sense that communications are between a local and
a remote device. May also be used to distinguish a
remote port or a remote server from the local one.

server - used to refer to a software application on a net-
work device such as a PC that offers network services
such as SMTP.

client - used to refer to a software application on a net-
work device such as a PC that uses the services of a
server.

host - used to refer to a network device offering services
to an application such as an email program. For our pur-
poses the terms host and server means exactly the same
thing. Could also just refer to an application program on
either side of a communications channel, thus the terms
local and remote host.

API - Application Programmer’s Interface. A set of soft-
ware functions and variables an application programmer
may use to utilize network communications via the net-
work protocols. The TCP API is used to transfer data
over a TCP connection.

connection - used to refer to a logical channel or path for
communications between two physically removed hosts
or applications. A connection is always in a certain state.
A connection may be closed or open or in some other
state. An open connection is also said to be established.
Data can only be transferred between hosts when a con-
nection is open or established.
www.ubicom.com

AN37 Web Server & Send Email Client Implementation with Ethernet as the Physical Layer
octet - used to refer to a 8-bit quantity, commonly substi-
tuted for “byte”. Some processors have 32-bit bytes and
therefore the term octet is used in RFCs to avoid confu-
sion. When this application note uses the term byte, ref-
erence is made to 8-bit quantities as used by the Ubicom
controller.

data - the bytes a user application or network protocol
sends or receives over a connection. It is analogous to
the payload of a missile. All the other material is consid-
ered to be part of the necessities in delivering the pay-
load. A message can also be called the data.

header - the first number of bytes ahead of the data
bytes in a datagram, a segment, or a message. The
header contains information described in the RFC of the
applicable protocol. The data contained in a segment
conveys no information described in the applicable proto-
col’s RFC. If the protocol was used as a carrier for
another protocol, the data may be interpreted according
to the RFC of the other protocol eg. SMTP data carried
by the TCP protocol.

segment - used to refer to a logical unit of data. Almost
universally used to refer to TCP. A TCP segment consists
of a header and data. The TCP data may be a HTTP
message or SMTP data.

datagram - used to refer to a complete block of data. An
internet datagram consists of an IP header and IP data.

packet - used to refer to a block of data physically trans-
mitted over a network. An internet datagram is handed to
a network module to transmit as one packet or a series of
packets, depending on whether the physical network can
send packets as large as the datagram is. If the network
cannot, it fragments a datagram into a series of packets
which are sent over the network. The packets are re-
organized at the receiving network node to obtain the
original datagram.

frame - used exclusively to refer to a packet transmitted
on an Ethernet network. Commonly used when discuss-
ing Ethernet communications when only referring to the
Ethernet protocol.

socket - used to indicate the unique logical address of a
remote or local TCP connection’s application. A socket
contains a TCP port number and an IP address.

2.2 TCP/IP
The term “TCP/IP” is commonly used whenever the topic
of Internet communications are discussed. Indeed,
“TCP/IP” here refers to a whole suite of networking proto-
cols, with the core building blocks being the IP and TCP
protocols. The point to keep in mind here is that TCP/IP
can be used to imply one of two things – the first, and
more common interpretation, is that it is a collection of all
standard networking protocols used for communicating
on the Internet, and the second, and less common inter-
pretation, that of the TCP protocol and IP protocol exclu-
sively.

2.3 Packet-Based vs. Stream-Based
Fundamentally, at its core, the Internet is a packet-based
network. Thus everything that flows through it has to ulti-
mately be split into discrete packets, of data and head-

ers, which may vary in size. Often, application
programmers prefer to deal with stream-based data
transfer mechanisms, which is an essentially open-ended
form of communication in that the amount of data that
can be transmitted is non-finite. Stream-based mecha-
nisms often have a push-mechanism too, which is a way
to ‘hurry’ some section of data along to its destination.
The UDP protocol is an example of a packet-based pro-
tocol. TCP is an example of a stream-based protocol.
Knowing this will help you determine which type of net-
work transport layer is suitable for your application

2.4 Ethernet
Ethernet is a shared-bus multiple-access with collision-
detection communication scheme. Ethernet is defined
broadly enough that it supports several physical media
types. The media type used in this implementation is
10BaseT, commonly known as twisted-pair.

With Ethernet, it is important to understand the difference
between a logical node address and a physical node
address. A physical node address in Ethernet is a guar-
anteed unique 48-bit number that is assigned to every
Ethernet terminal interface manufactured. A logical node
address is the address that networking protocols use
when directing packets. It allows a many-to-one mapping
of physical addresses to a logical address. This essen-
tially means that Ethernet controllers can carry packets
between different physical networks and still deliver them
to only one final destination. The Internet world uses “IP
Address” for its logical addressing. This is a 32-bit num-
ber (commonly expressed as “w.x.y.z”).

IP addresses are used to segment the internet into big
groups of LANs each containing a lot of network devices.
A unique IP address for each computer on the internet
would be impossible because of the huge volumes and
difficulty to control assignments. Therefore, you may
encounter two PCs on different physical LANs that have
the same IP address. The moment communication is
required from LAN to LAN over the internet, the use is
made of gateway or router PCs that will act on behalf of a
network device connected on a LAN.

Ethernet is a best-attempt delivery network. In other
words, the network will try its best to deliver a packet,
once sent, to its destination. It is not a guaranteed deliv-
ery network, which means that additional software is
required to ensure a reliable packet delivery or stream
transport service. Furthermore, Ethernet does not guar-
antee in-order delivery of packets, once sent.

Ethernet is a packet-switched network. The term ‘frame’
is used to refer to a packet of data in Ethernet. An Ether-
net frame must be at least 64 bytes in length, and no
more than 1518 bytes.

To ensure data integrity (i.e. to provide error-checking,
but not error-correction), Ethernet frames are constructed
with a 32-bit CRC. Ethernet interfaces, when receiving
Ethernet frames, are required to check the CRC field and
discard (usually) the frame should the CRC not match.
© 2000 Ubicom, Inc. All rights reserved. - 2 - www.ubicom.com

Web Server & Send Email Client Implementation with Ethernet as the Physical Layer AN37
2.5 Ethernet SX-Stack
One can think of TCP/IP software as being built up of four
levels of abstraction as shown in Figure 2-1.

At the bottom, the Physical layer, is the software that is
specific to the physical media being used to transport the
IP packets (NIC Device Driver).

Above this is the Internet layer, which implements the
protocols to enable packets to be routed from one node
to another on the Internet, as well as communications
test and diagnostic services (ARP, IP. ICMP).

The next layer is the Transport protocols layer. This layer
is responsible for end-to-end communication between
application programs. The protocols implemented in this
layer allow multiple connections to be established by
multiple application programs. These protocols can regu-
late the flow of data, ensure data integrity, establish and
close-down connections (UDP, TCP).

Up to this point, all the layers discussed are generally
implemented by the Operating System running on the
host. This is so that software developers need not rein-
vent the wheel when they need to communicate informa-
tion across a network. Along these lines, the stack
provides for the same infrastructure for thin, resource-
scarce, embedded devices.

Finally, capping the stack, is the Applications layer. Soft-
ware at this level does not need to worry about the
mechanics of how information is transported from one
machine on the Internet to another. At the same time,
applications are guaranteed that whatever information
they want to communicate will be transported over LANs
and WANs, including the globe-spanning Internet. Appli-
cation layer software may implement standard services
(e.g. DNS, FTP, SMTP, HTTP, etc.), or they may be pro-
prietary customized applications whose audience is
restricted to the same applications running on other
hosts.

2.6 ARP
The Address Resolution Protocol (ARP) allows the
dynamic mapping of logical addresses to physical
addresses.

As discussed in section 2.3, Ethernet physical interface
supports a unique 48-bit address. However, for efficient
routing of packets, the IP networks use a 32-bit logical
address. This is a hierarchical addressing scheme as it
allows individual nodes to be part of a subnet, which in
turn can be subsumed into a larger subnet. The Ethernet

specification is independent of the logical addressing
scheme used. The delivery of all Ethernet frames is spec-
ified exclusively by Ethernet physical addresses.

ARP, hence, is the bridge that maps IP addresses to
physical addresses. It provides the mechanism by which
a node can transmit an IP packet to a destination, whose
IP address is all that is known, over an Ethernet network.

2.7 IP Datagrams
A datagram is a packet of actual data combined with a
packet header. All Internet communication travels in the
form of IP datagrams. They are the common mail
pouches of the Internet world. Hence it is important to
understand the role of IP, which is described next.

Figure 2-2 shows a few equivalent IP datagrams or inter-
net datagrams.

Figure 2-1. Ethernet SX-Stack

Figure 2-2. IP Datagrams
© 2000 Ubicom, Inc. All rights reserved. - 3 - www.ubicom.com

AN37 Web Server & Send Email Client Implementation with Ethernet as the Physical Layer
2.8 IP/ICMP
IP stands for Internet Protocol. It is the common denomi-
nator of the entire TCP/IP suite of protocols. The IP pro-
tocol assumes an unreliable, best-effort, connectionless
packet delivery system, which is exactly what Ethernet
provides.

Let us describe each of the above terms in more detail.

By unreliable, it is meant that a sent packet is not guaran-
teed to reach its destination, even if the destination is
reachable. There are several reasons why a packet may
not reach its destination:

1. It was corrupted en-route and discarded at some point,
2. The destination node is not connected to the network.
3. The network routing tables were incorrect thus the net-

work does not know how to deliver the packet.
4. Network congestion has forced a router somewhere

en-route to drop the packet.
Best-effort, means that the network always tries its best,
given what it knows, to deliver the packet.

Connectionless, implies that there is no handshaking
involved between the sender and the recipient(s) prior to
the packet being sent. Senders are at liberty to send
whenever they wish, subject of course to their getting
time on the Ethernet, which is a shared-bus network.

Packet, implies that all data that traverses an IP network
have to be of finite size, and accompanied by a header.
IP packets are allowed to be fragmented by the network
as the packet traverses the network. However, the SX-
Stack does not accept fragmented packets, since it does
not do packet reconstruction.

2.9 DHCP
Dynamic Host Configuration Protocol (DHCP) allows the
use of the client-server paradigm for host machines to
dynamically bootstrap, as well as configure, themselves
when placed in a networked environment. Often used for
its ability to dynamically assign scarce IP addresses to
networked devices upon startup, DHCP is however not
restricted to that, as it has the capability to configure
server address, router address and any number of ven-
dor-specific configuration parameters.

For DHCP to work, there must be both a client (such as
the iSX) as well as a server(s). The client does not need
to know the IP address of the server, as it will discover it
for itself. The server(s) will offer an IP address to the cli-
ent on request. Some servers allocate limited-time leases
on IP addresses, which means the client will need to peri-
odically renew its lease on its IP address.

2.10 UDP
The User Datagram Protocol (UDP) allows applications
to send packets of data across the network to each other.
It can also be used to broadcast data to multiple nodes.
UDP is a unreliable, connectionless delivery service (see
section 2.7).

UDP packets may be lost in the network and may arrive
out of order with other sent UDP packets. However, UDP
packets are checked for data integrity; so if they are

received, it is safe to assume the data contained within is
good.

To send a UDP packet to a destination application, the
source application must know both the IP address of the
destination host, as well as the port number of the desti-
nation application.

2.11 TCP
The Transmission Control Protocol (TCP) has become
the protocol of choice for many applications because it
allows for connection-based, reliable transport of data
across an unreliable network. It does this at the cost of
throughput, latency and bandwidth utilization.

Like UDP, TCP achieves multiplexing through the use of
source and destination ports. A TCP ‘connection’ is
defined to be a communication channel established
between two ‘end-points’. An ‘end-point’ is defined to be
a unique combination of both an IP address and a port
number.

Before a single byte of data can be transmitted using
TCP, a connection has to be set up between end-points.
This is typically done using a three-way handshake
involving the transmission of three TCP segments. The
TCP protocol takes care of data sequencing, re-transmis-
sions and data-checking. It is important to understand
that HTTP messages and SMTP data are sent between
applications on remote network devices by using TCP as
the transport service. HTTP messages and SMTP data
sent using TCP are nothing more than the data bytes in a
TCP segment.

It is important to understand that TCP is based on a cli-
ent-server paradigm. This does not mean that one trans-
mits exclusively while the other receives only. The ‘client’
is the application which initiates the connection with the
‘server’. To achieve that, the TCP protocol allows server
applications to do a passive-open, which means listening
on that port and accepting connections to it, while allow-
ing client applications to do an active-open, which ini-
tiates the connection. This current Ubicom TCP/IP stack
software supports two TCP connections. Either connec-
tion may be established through a passive-open or an
active-open.

2.12 HTTP
The Hypertext Transfer Protocol is used to transfer
images and text to web browsers. A web browser con-
tacts a web server such as implemented on the Ethernet
demo board. The web browser requests resources or
submits data by using a certain defined method of infor-
mation transfer. To retrieve resources from the web
server the method is “get”. To submit data to a program
on a web server the method is “post” or “put”. In the case
of the “get” method, the web server will send the
requested resource such as a html file via the open TCP
connection to the web browser. The “post” method is
used to submit data to a program on a web server such
as found on input fields on some web pages. The data
can be used to control devices or more commonly, to
generate html files on the fly to send back to the web
browser such as found in internet “search engines” send-
ing back the results of a search.
© 2000 Ubicom, Inc. All rights reserved. - 4 - www.ubicom.com

Web Server & Send Email Client Implementation with Ethernet as the Physical Layer AN37
2.13 SMTP
The Simple Mail Transfer Protocol is used to send email
to a SMTP server. The sending program is called the
send client. A send client sends email to a recipient via a
remote SMTP server who receives the email message. A
recipient will have to retrieve email from a mail server via
the Post Office Protocol. The SMTP protocol is a com-
mand response type protocol and uses TCP as its data
carrier or transport service.

3.0 The Ethernet Demo Board
3.0.1 Hardware Description

The Ethernet demo board can be connected to a
10/100BaseT Ethernet connection. To describe the
board’s Ethernet capability, it simply consists of two con-
trollers and a transformer, T1. The Ethernet controller,
U5, handles Ethernet communication over the physical
media while the Ubicom controller, U2, controls the setup
and commanding of the Ethernet controller. The Ubicom
controller runs the only program code named the Ubicom
Ethernet SX-Stack software on the board. The stack soft-
ware consists of a driver to interface to the Ethernet con-
troller and of various network protocols used to
communicate to remote network devices over the Ether-
net. All other components or sections of circuitry are
either supporting the basic Ethernet components or
implement additional functionality on the board. A more
detailed description of the hardware on the demo board
follows:

1. The Ubicom controller, U2, X1

The Ubicom controller operates at a frequency of 50MHz
implemented with an external resonator, X1. The control-
ler executes one instruction per clock cycle, thus one
every 20ns. The controller has 4096 of electrically eras-
able FLASH program memory and 262 bytes of SRAM
data memory.

2. The Ethernet physical layer controller, U5, T1, X2

The board is to be connected to a 10/100BaseT Ethernet
hub or connection through J2. The Ethernet electrical sig-
nalling and control interface to the Ubicom controller is
implemented by the Ethernet Controller, U5. The Ether-
net controller interfaces to the Ubicom controller through
ports B and C on the Ubicom controller. Port C is set up
as a bidirectional databus to transfer 8-bit data to and
from the Ethernet controller. Port B is used as address
lines. SA0-4, read and write signals complete the inter-
face to the Ethernet controller. Since the Realtek Ether-
net controller was developed for use on ISA bus PC type
plug-in cards, the addressing and control interface to the
Ethernet controller is according to the ISA bus standard.

3. Memory for storing web pages, U3

The web server on the board is implemented by storing
resources consisting of html files and graphics data on
the serial EEPROM memory, U3. The Ubicom controller
will get a request for a certain resource from a remote
web browser on the Ethernet and will retrieve the applica-
ble html file or graphics content from the serial memory
via a serial I2C bus implemented on pins RA5 and RA6 of
the Ubicom controller. The data is then packaged into

TCP segments and sent over the Ethernet to the request-
ing web-browser.

4. RS232 port for downloading new web content to
the memory, U1, JP1

The RS232 port on the board is used to download new
web content to the serial memory. U3 is a voltage level
converter IC that is used to change voltage levels from
TLL to RS232 and vice versa when communicating with a
RS232 port such as the serial COM port on a PC.

5. The +5V power supply, U4

The power supply on the board is implemented with a
voltage regulator, U4 and associated components. It sup-
plies a steady +5VDC to the components on the board.

6. A user expansion IO port, JP4

The user port may be used for interfacing to a daughter
board and each IO pin may be set up to be either an out-
put or an input pin.

7. A Java Virtual Machine port, JP5, JP6

Contact sales@Ubicom.com for further information.

8. A Sigma Delta Analog to Digital Conversion circuit,
R1,7,10, C7

The Sigma Delta conversion technique is commonly
used to implement low cost analog to digital converters.
The circuit in this case basically works by alternating the
voltage between high and low on pin RE7 of the Ubicom
controller. This either charges or discharges the capacitor
C7. By sensing the capacitor’s voltage level on pin RE6
of the Ubicom controller through utilizing the inherent
voltage trip level of the input stage on this pin, a compar-
ator is implemented. The output of the comparator is
used to increment a software result counter whenever
the comparator swings into the low state. Another soft-
ware counter is also incremented on each swing of the
comparator to count the number of “conversions” up to a
certain number after which the value in the result counter
is valid. A new conversion starts by clearing the counters.
The voltage level on C7 is affected by an external influ-
ence which is the voltage divider R11 and R1 feeding the
capacitor through R10. The resistance of thermistor R1
changes with temperature and will thus influence the ini-
tial voltage level from which C7 is charged or discharged.
This means that the time it takes for the comparator to
swing over from the one to the other state is either
increased or decreased and the result counter will be
counting higher or lower according to the temperature of
the thermistor. This effectively makes an analog to digital
converter of which the result counter value is a represen-
tation of the temperature of R1. The demo board soft-
ware only displays the value of the result counter on a
dynamic web page in the web server demo and does not
attempt to translate this value to a real temperature
value.

9. Ubicom ISP port for programming the Ubicom con-
troller and debugging code, JP2

Program and debug tools currently from Parallax and
Advanced TransData can be plugged into JP2. A single
jumper connector, JP3 is also included to isolate the res-
© 2000 Ubicom, Inc. All rights reserved. - 5 - www.ubicom.com

Web Server & Send Email Client Implementation with Ethernet as the Physical Layer AN37
onator, X1, from the ISP port during programming and
debugging.

4.0 Demo Programs
4.1 The Web Server
The web server is implemented in software by exclu-
sively using the TCP API which is explained in 6.0 “Using
the TCP API”. The Ubicom Ethernet stack software sup-
ports two simultaneous TCP connections to the Ethernet
SX-Stack demo board. A TCP connection to a remote
server can be either initiated from the demo board or can
be established from the remote server initiating the con-
nection. A web server is essentially a passive device that
waits for requests from remote web-browsers. A remote
browser initiates a TCP connection to the demo board.
Once the demo board receives a request to establish a
TCP connection, it creates a socket that consists of the
remote TCP port number and the remote IP address. The
TCP connection manager function on the TCP/IP stack
software of the demo board uses this socket to recognize
subsequent incoming datagrams from the remote server
running the web-browser and directs the TCP data from
those packets to the application software using the TCP
connection bound to that socket. This means that
another application using the other TCP connection may
be receiving data from a whole different remote server
and only the data destined for it will be delivered to it.

The remote web-browser requests resources from the
demo board web server by asking for it in the very first
text line in the HTTP message. The HTTP message is
the payload of the TCP segment meaning that the data
section of the TCP segment is the whole HTTP message.
The web server supports two types of requests, also
referred to as methods:

1. get - the get method request text line looks something
like this:

GET /index.htm

The resource stored in the EEPROM memory under
index.htm will then be retrieved from the memory, pack-
aged into TCP segments and sent back to the requesting
web-browser by using the information in the socket
bound to the TCP connection for the web server.

2. post - the post method request text line looks some-
thing like this:

POST /postctrl.htm

Normally, a html file associated with the post method will
contain text input forms and buttons that may be clicked
to send control values to a web server. This means that
before a post of text or control values can take place, a
web-browser will first get the html file to display the page
with the input controls. A HTTP message containing the
post method line will be sent to the web server once the
user presses a submit button on the web page with the
controls. A variable that is known to the web server and is
used as a control variable to control something like a
LED on the board will be sent along with the post
request. Web-browsers use different ways of doing a
post request to a web server. Some like Internet Explorer
will send only one HTTP message containing the post

text line and the variables. Web-browsers like Netscape
Navigator sends two seperate messages, each in a sep-
erate TCP segment. One contains the post method text
line and the other contains the variables. The Web server
demo on the demo board distinguishes between posts
from these two types of browsers and will still find the
control variables in the first or following HTTP message.

Once the web server sends a resource, may it be a html
file’s text or other graphics data, the web-browser will
close the open TCP connection and the TCP connection
manager on the demo board will delete the socket that
was bound to that open TCP connection. Subsequent
requests from a web server will result in a new socket
being created. The reason why a open TCP connection
should be closed immediately after a successful data
transfer is to conserve memory that is taken up by storing
sockets as well as to prevent spurious packets on the
internet to cause false data transfers.

The resources on the serial EEPROM memory is stored
as pure text or data and is retrieved by a hash value that
is stored in a lookup table in the memory ahead of the
actual content. Essentially, when the data was stored on
the EEPROM, every resource’s data-bytes were added
together and clipped to a one byte value which is a han-
dle or hash that identifies the resource. The web server
application searches for the resource name in the get or
post text line of the HTML message and adds the byte
values of the resource name together and this value cor-
responds to the handle or hash value which is stored in
the serial memory when the resources were transferred
to the memory via the RS232 serial port. The lookup
table simply contains pointers into the memory indicating
the starting addresses and number of bytes of each
resource.

4.1.1 Dynamic Web Pages

The serial EEPROM memory contains three dynamic
web pages:

1. temperature.htm

2. resources.htm

3. postctrl.htm

A dynamic web page contains content that changes
according to some external value or parameter. A simple
example is a web page that shows the temperature of a
sensor on the board. The temperature may be 50
degrees now but may be 60 when the page is retrieved
again. The Ethernet SX-Stack demo board implements
dynamic web pages in a very easy to understand man-
ner. Dynamic web pages are stored in the serial
EEPROM with a special sequence of data bytes or char-
acters embedded at the exact location where the
dynamic content needs to be inserted. Look at the tem-
perature.htm file below:

<HTML>

<HEAD>

<TITLE> Board Temperature Monitor </TITLE>

</HEAD>

<BODY BGCOLOR=#404040 text=#80FF00>
© 2000 Ubicom, Inc. All rights reserved. - 6 - www.ubicom.com

Web Server & Send Email Client Implementation with Ethernet as the Physical Layer AN37
<H2> Real-time Board Temperature Monitor </H2>

<center>Temperature is now: <font size=+2
color=#FF99FF> ðñò </center>

<P>

Hit 'F5' or click the 'Refresh' but-
ton on your browser to see the current tempera-
ture

</BODY>

</HTML>

The three characters indicated with bold text are the
“magic key” that is used to indicate the location of the
dynamic content in this web page. In this case a value
from an analog to digital converter needs to be inserted
here when the text of this htm file or resource is being
packaged into a TCP segment ready to be sent to the
requesting web-browser. The web server software will
look for these three characters while retrieving the data
bytes from the serial memory and will replace them with
the value from the analog to digital converter. It is impor-
tant to note that a magic key needs to be non-printable
characters that could never be mistaken for real text
repeated elsewhere in the htm file.

The resources.htm file below also contains dynamic con-
tent which is the value of a page visited counter. The
magic key is the same as for the temperature.htm page.
The web server software distinguishes which dynamic
content belongs to which dynamic webpages htm file by
also looking at the hash value of the requested resource.
In this case the requested resource is /resources.htm

<HTML>

<HEAD>

<TITLE> iSX Resource Usage </TITLE>

</HEAD>

<BODY BGCOLOR=#404040 text=#FF8000>

<H2>Resource Usage:</H2>

<CENTER>

<TABLE border=2 bgcolor=#000000 width="50%">

<TR>

<TD width="30%">ROM</TD>

<TD align="center">2527</TD>

</TR>

<TR>

<TD width="30%">RAM</TD>

<TD align="center">98</TD>

</TR>

</TABLE>

</CENTER>

<P>

<P>

This pages has been accessed <font size=+2
color=#FF99FF> ðñò times.

</BODY>

</HTML>

Finally, the postctrl.htm page is shown below. Only one of
the characters for the magic key is used here to indicate
to a requesting web browser which graphic gif picture to
get once the LED has been controlled using the http post
method. In this case the web server software will always
replace the magic key character with either a ‘n’ or a ‘f’
after checking the status of the LED. If the LED is
switched on via the http post method, it will send back
this page with a ‘n’ giving ledon.gif. The web page will
thus display a bright LED picture indicating that the http
post method request to switch the LED on was success-
ful.

<HTML>

<HEAD><TITLE>Ubicom control via HTML
POST</TITLE></HEAD>

<BODY BGCOLOR=#404040 text=#80FF00>

<H2> Remote control demo </H2>

<P>

Control messages can be sent
to the SX via the HTTP POST method. In this way
devices such as air conditioners can be remotely
switched on and off from a standard web-browser.

Select the LED on or off radio button and click
on Submit to control the LED on the demo
board.

LED

<left>

<form action="http://10.1.1.20/postctrl.htm"
method="POST">

<input type="radio" name="led" value="1"> On

<input type="radio" name="led" value="0" CHECKED>
Off

<input type="radio" name="led" value="t"> Tog-
gle

<input type="submit" value="Submit">

</form>

</BODY>

</HTML>
© 2000 Ubicom, Inc. All rights reserved. - 7 - www.ubicom.com

Web Server & Send Email Client Implementation with Ethernet as the Physical Layer AN37
4.2 The Send Email Client
The Send Email client is also implemented by using the
TCP API functions listed in 6.0 “Using the TCP API”. The
web server uses TCP connection 2 while connection 1 is
used by the email client. The email client differs from the
web server in the sense that it is not passively waiting for
a request to establish a TCP connection with a remote
server in order to transfer data in TCP segments. The
email client initiates the opening of a TCP connection
with a remote server that has a listening SMTP server.
Listening refers to a half socket created on the remote
server that contains only the remote SMTP server’s TCP
port number which is universally assigned as 25. Once a
TCP connection is established between the demo
board’s email client and the remote SMTP server, the
SMTP server will fill in the socket with the demo board’s
IP address and TCP port number. On the demo board the
socket is already fully defined before the email client
attempts to establish a TCP connection with the remote
SMTP server. The socket on the demo board contains
the IP address of the remote SMTP server and the port
number of the local TCP connection. As before, incoming
TCP data from the remote SMTP server will be delivered
to the send email client application which is using TCP
connection 1.

To send an email the user presses a button on the demo
board. This sets the SMTP send state machine into
motion. The SMTP protocol is a command-response type
protocol. The sender, in this case the demo board, sends
a SMTP command in a TCP segment to the remote
SMTP server which will respond with a response code
and the applicable data bytes in a TCP segment. Even
though the email client on the demo board is the com-
mander during the data transfers, the first SMTP data is
sent from the remote SMTP server to the email client
directly after a TCP connection has been established.
This very first SMTP data serves as an identifier which
contains something like the following text:

220 Eserv/2.92 ESMTP Server Ready.

A response code is always sent as the first three charac-
ters. In this case 220 means “service ready”. The email
client will now identify itself by sending a SMTP com-
mand like this:

HELO sx

The SMTP server may respond with an error code or if
ready and recognizing “sx” as a user with an email
account on the SMTP server, will respond with:

250 Hello 10.1.1.20

The 250 response code means “Requested mail action
ok or completed”.

To send an email the client will now send a packet con-
taining:

MAIL FROM: <sx>

The sender’s email address name is inserted between
braces.

If the sender is valid on the SMTP server (you need an
email account on a SMTP server to be able to send
email) it will respond with:

250 OK

The send email client will now send:

RCPT TO: <joe@demo.sx>

This indicates the recipient of the mail. The SMTP server
will accept this command if joe has an email account
there or if it can relay the email to another SMTP server
that will deliver the email to joe.

The SMTP server will respond with:

250 OK

This indicates to the email client that the SMTP server
will accept the mail.

The email client will now send:

DATA

to indicate that the email data is to be sent.

The SMTP server can now respond with a text string
which contains formatting instructions or whatever may
be needed for a custom implementation:

354 send the mail data, end with .

This indicates to the send email client it can send the mail
data but must end it with a definite <CRLF>.<CRLF>
since TCP packets are usually padded with extra data
bytes that may be confused for mail data.

The email client will now send the mail data as follows in
a TCP segment:

From: sx

To: Joe

Subject: Button Pressed!

Button SW2 Pressed!
© 2000 Ubicom, Inc. All rights reserved. - 8 - www.ubicom.com

Web Server & Send Email Client Implementation with Ethernet as the Physical Layer AN37
The SMTP server may indicate a syntax error or some
other error code if the mail format is wrong or will respond
with the following if the mail data is acceptable:

250 OK message accepted for delivery

The send email client will now indicate to the SMTP
server it has nothing more to do with:

QUIT

The SMTP server will respond with the following mes-
sage if no other errors are encountered:

221 Service closing transmission channel

Now, the SMTP server will initiate the closing of the TCP
connection established between the demo board and
itself. This change in the command / response roles in
the SMTP protocol is probably to give a large degree of
confidence to the email send client program that the
SMTP server was indeed alive during the whole mail
transfer up to the very end when the transmission chan-
nel was closed.
© 2000 Ubicom, Inc. All rights reserved. - 9 - www.ubicom.com

Web Server & Send Email Client Implementation with Ethernet as the Physical Layer AN37
5.0 The TCP/IP Stack Software
The TCP/IP stack software consists of three API’s which
a programmer may use:

1. The TCP API

2. The UDP API

3. The SMTP API

Since there is only one Ethernet controller on the board,
U5, the board is set up to have one IP address and one
Ethernet address (also referred to as the MAC address).
Every Ethernet controller IC has a unique MAC address
since electrical signalling is done by these devices.

The following variables are to be set up before the stack
can be used:

1. myIP3-0 - the board’s IP address

Typically we could have:

myIP3 = 10

myIP2 = 1

myIP1 = 1

myIP0 = 20

giving the demo board an IP address of 10.1.1.20

2. SX_ETH_ADDR0-5 - the Ethernet controller, U5’s
MAC address

This is the 48-bit Ethernet address of Media Access Con-
troller address which will be used by the Ethernet control-
ler when sending or listening for Ethernet frames. The
demo board uses a MAC address that is to be used only
temporary. To change this you need to assign a new
MAC address.

3. INT_PERIOD

This is a value from 0 to 255 that is subtracted from a
free-running hardware counter that causes an interrupt
when it overflows. An interrupt routine is called in
response to the overflowing counter and currently the
stack uses the interrupt routine to advance various soft-
ware counters as well as to flash a LED and read the
value of the temperature sensor. The value in
INT_PERIOD is subtracted from the counter’s value
when the return from interrupt instruction is executed to
end the interrupt routine. This ensures a known interrupt
frequency with no jitter. The frequency at which the inter-
rupt routine is called can easily be determined by dividing
the Ubicom controller, U2’s clock frequency by the num-
ber in INT_PERIOD. Since the hardware timer advances
once every cycle the calculation is a simple divide.

It is important to note that the various state machines
used by the stack (TCP/UDP/SMTP) execute as fast as
possible. They are not implemented with virtual periph-
eral type code such as other Ubicom virtual peripheral
software. Virtual peripheral software always run inside an
interrupt routine and are thus executed periodically. The
stack’s state machines do not run inside an interrupt rou-
tine. They run in mainline loop code such as the following
code will explain:

main:

; state machines code

jmp :main
© 2000 Ubicom, Inc. All rights reserved. - 10 - www.ubicom.com

Web Server & Send Email Client Implementation with Ethernet as the Physical Layer AN37
6.0 Using the TCP API
The TCP API is a collection of functions which the TCP
state machine calls and variables that are used by the
state machine. To use the API one must think of how a
typical interrupt routine in the C programming language is
used by a programmer. A C programmer that wants to
execute code inside an interrupt routine function, let’s
say to advance a counter or to check if a switch is
pressed, doesn’t need to call the interrupt routine. The
interrupt routine is automatically called in response to an
event or it may be periodically called in response to a
hardware timer’s value. The TCP state machine calls cer-
tain TCP API functions when events occur such as
incoming data that is available. It also calls other TCP
API functions periodically like to check if an application
such as the send email client wants to open a TCP con-
nection. As a programmer using the TCP API you can
never call an API function directly but would rather simply
insert your code in the space where the function is called.
Your code will be executed once the applicable event
occurs or it will be executed periodically. Before we look
at an example of how to use the TCP API, note the fol-
lowing:

1. There are two TCP connections available on this
TCP/IP stack. Two applications cannot share a TCP con-
nection since a connection is defined by a socket that
describes only one remote TCP connection.

2. TCP connection 1 can only be used to do an active
open. TCP connection 2 can only be used to do a pas-
sive open.

3. Your application software may either open a TCP con-
nection to a remote server referred to as an “active open”
by initiating the connection, or your software may do a
“passive open” by waiting for a remote server to initiate
the connection. The web server is a case of a “passive
open” and the send email client uses an “active open”.

4. For an active open you need to specify the IP address
of the remote server you wish to establish a connection
with and the TCP port number of the application you wish
to connect with.

5. For a passive open you need to specify the local TCP
port your application will use. The TCP connection man-
ager will “listen” on this port for incoming TCP segments
from remote servers wishing to establish a connection
with your application software.

A short discussion on how two TCP connections are han-
dled by the TCP API is in order now. To prevent an over-
run of the receive buffer of the Ethernet controller
possible resulting in dropped frames, the main loop of the
TCP/IP stack software gives precedence to the reception
of internet datagrams as opposed to the transmission of
internet datagrams. This means that the software will
continue handling incoming internet datagrams of what-
ever protocols until there are no more datagrams in the
receive buffer of the Ethernet controller. Once the receive
buffer is empty it will call the necessary functions to
check if an application wants to transmit something. In
the case of the TCP state machine, your application can

only transmit TCP data once a TCP connection is estab-
lished or open. Incoming TCP data is delivered to the
correct application with the use of a bit or flag called
TCP_SOCK. The TCP state machine sets this flag when
an incoming internet datagram is for the TCP application
using TCP connection 2 and clears it when the incoming
datagram is for the application using connection 1. At the
top of every TCP API function (except TCPApp1Init and
TCPApp2Init), there is a piece of code that checks this
flag and will jump to a label under either the space where
TCP connection 1 application code goes or where TCP
connection 2 application code goes. If your TCP applica-
tion used TCPApp1Init you must insert your code in the
TCP API functions under the label indicated for TCP con-
nection 1 and vice versa.

Now for the transmission of TCP data. Each TCP con-
nection has the same priority to transmit and therefore
each pass through the TCP API functions called by the
TCP state machine is alternated between TCP connec-
tion 1 and 2. At the top of every TCP API function (except
TCPApp1Init and TCPApp2Init), there is a piece of code
that checks a flag called TCP_TXSEMA and will jump to
a label under either the space where TCP connection 1
application code goes or where TCP connection 2 appli-
cation code goes. If your TCP application used
TCPApp1Init you must insert your code in the TCP API
functions under the label indicated for TCP connection 1
and vice versa. The TCP_TXSEMA flag is alternated
inside the main loop code of the TCP/IP stack software.

6.1 Establishing a TCP connection
A description of the logical sequence of steps you will
need to take to establish a TCP connection is as follows:

1. You will need to have set up the stack variables such
as described under 5.0. They are the board’s IP address
and the MAC address for the Ethernet controller.

2. There are two TCP API functions available, one for
each TCP connection. They are:

TCPApp1Init - Only to be used for doing an active open.

TCPApp2Init - Only to be used for doing a passive open.

These functions are called continuously as long as a TCP
connection state is closed. In these two functions you will
insert “trigger code” that will start a passive open or an
active open in response to some trigger. You will also
define the TCP sockets here. An example of trigger code
may be to continuously check whether a switch is
pressed and once pressed, have an active open be done
to send an email. Passive open code will more than often
be just the definition of the TCP socket since the trigger
to open the TCP connection will be from the remote TCP.
An example of doing a passive open in TCPApp2Init is
shown below:
© 2000 Ubicom, Inc. All rights reserved. - 11 - www.ubicom.com

Web Server & Send Email Client Implementation with Ethernet as the Physical Layer AN37
;
**

_TCPApp2Init

; Called repeatedly as long as TCP connection2 state is
closed

; [TCP API Function]

; INPUT: none

; OUTPUT: none

;
**

_bank TCB2_BANK

mov tcb2LocalPortLSB, #HTTP_PORT_LSB

mov tcb2LocalPortMSB, #HTTP_PORT_MSB

bank HTTP_BANK

clr httpParseState

clr httpURIHash

; indicate tcp2 connection

setb flags2.TCP_SOCK

jmp @TCPAppPassiveOpen

retp

Looking at the code excerpt we see the local TCP port
that we will be listening on being set up by
tcb2LocalPortLSB and tcb2LocalPortMSB. In this case a
value declared elsewhere of 80 is used which is the
worldwide standard TCP port number a web server lis-
tens on for requests from web browsers. Two http vari-
ables are cleared which is needed to initialize the http
protocol. The last section of the code is where a flag or
bit is set in the flags2 variable to indicate to the TCP state
machine we are using TCP connection 2. Finally a jump
is made to a function called TCPAppPassiveOpen. This
function will start the TCP state machine by putting it into
the “Listening” state. Note that since the TCP connection
state is not closed now any more but in “listen”,
TCPApp2Init will not be called again from the main loop.
Only when another TCP API function named TCPApp-
Close is called, will the TCP connection state be reset to
closed and will TCPAppPassiveOpen be called again.
When we use trigger code however, we would jump over
the call to TCPAppPassiveOpen and will only allow this
function to be called once the trigger is made eg. a “web
server enable” push button on a board.

Now we will look at how to use the TCPApp1Init API func-
tion to do an active open.

;
**

_TCPApp1Init

; Called repeatedly as long as TCP connection1 state is
closed

; [TCP API Function]

; INPUT: none

; OUTPUT: none

;
**

; trigger code

test switch

sz

retp ; exit, switch not pressed

_bank SMTP_BANK

mov w, #SMTP_CONNECT ; start SMTP state machine
to connect

mov smtpState, w

; set up local & remote ports for tcp1 connection

_bank TCB1_BANK

mov tcb1LocalPortLSB, #100

mov tcb1LocalPortMSB, #100

mov tcb1RemotePortLSB, #SMTP_PORT_LSB

mov tcb1RemotePortMSB, #SMTP_PORT_MSB

; fill in remote IP to connect with in tcp socket

_bank TCPSOCKET_BANK

mov sock1RemoteIP3,#SMTP_SERVER_IP3

mov sock1RemoteIP2,#SMTP_SERVER_IP2

mov sock1RemoteIP1,#SMTP_SERVER_IP1

mov sock1RemoteIP0,#SMTP_SERVER_IP0

; indicate tcp1 connection

clrb flags2.TCP_SOCK

jmp @TCPAppActiveOpen; open a tcp connection on
socket1

retp

The trigger code at the top of the function checks the
state of the switch variable and will keep exiting the func-
tion until the switch is pressed. The SMTP code inserted
here is used to start the SMTP state machine once the
switch is pressed. Note the setup of the TCP socket for
this connection. The local TCP port to be used by our
email application is set up with tcb1LocalPortLSB and
© 2000 Ubicom, Inc. All rights reserved. - 12 - www.ubicom.com

Web Server & Send Email Client Implementation with Ethernet as the Physical Layer AN37
tcb1LocalPortMSB. The remote TCP port our email client
must contact is set up by tcb1RemotePortLSB and
tcb1RemotePortMSB. In this case a value of 25 defined
elsewhere is used which is the worldwide standard port
number SMTP servers use to listen for incoming connec-
tions. Finally, the remote SMTP server’s IP address we
wish to contact is set by sock1RemoteIP3-0. Note the
clearing of the flags2 bit to indicate the use of TCP con-
nection 1 to the TCP state machine and then the final
jump to a function named TCPAppActiveOpen which will
put the TCP state machine into motion to connect to the
remote SMTP server. Also note that again, TCPApp1Init
will not be called again from the main loop since the TCP
connection state for connection 1 is now transitioning
from closed to other states. Only when the connection is
closed will TCPApp1Init be called again and the trigger
code will again block the opening of a TCP connection
until the switch is pressed again.

Note that only once a TCP connection is established can
actual data be transferred. During the opening process,
not a single byte of TCP data can be transmitted or
received by your application.

6.2 Handling incoming TCP data and sending TCP
data
Once the TCP connection is open there may be one of
two situations:

1. TCP data may be received from the remote server we
are connected to.

2. We may send TCP data to the remote server we are
connected to.

It is important to realize again now that there is a differ-
ence between a TCP segment and TCP data. A TCP
segment contains a header and data. On incoming TCP
segments, the TCP state machine strips the header from
the TCP segment and only delivers the data to your
application. On outgoing TCP segments, your application
only hands the data to the TCP state machine and once
done, the state machine will append a header to the data
and send the TCP segment.

An incoming TCP segment will cause a receive event so
that the TCP state machine will call the following TCP
API functions in the following order:

1. TCPAppRxBytes - This function is called only once
after a TCP segment was received. A variable called
tcpAppRxBytesMSB, LSB contains the value of the num-
ber of data bytes the TCP segment contains. This value
may be checked against expected bytes or to prepare a
counter.

2. TCPAppRxData - This function will be called as many
times as the value in tcpAppRxBytesMSB, LSB repre-
sents. Note that the data bytes are passed here through
the working register. It is here where you could parse or
store the incoming data bytes.

3. TCPAppRxDone - This function is called only once
after the last call to TCPAppRxData. This is handy since
you do not need to set up a counter in TCPAppRxData to
know when the last byte will be delivered. Your applica-
tion may use this function as an acknowledgement that

data has been successfully received. Also, if you need to
make a decision after the reception of data you will insert
your code here.

As previously said, the main loop of the TCP/IP stack
software gives precedence to the reception of internet
datagrams as opposed to the transmission of internet
datagrams. This means that the software will continue
handling incoming internet datagrams of whatever proto-
col until there are no more in the receive buffer of the
Ethernet controller. Once the receive buffer is empty it
will call the necessary functions to check if an application
wants to transmit something. In the case of the TCP state
machine, your application can only transmit data once a
TCP connection is established or open. Once the con-
nection is open, the TCP state machine will call the fol-
lowing TCP API functions in the following order:

1. TCPAppTxBytes - This function is called only once
before the rest of the TCP API functions shown below. In
this function your application must indicate how many
data bytes it wants to send. This is done by loading the
variables named tcpXUnAckMSB, LSB with a value indi-
cating the number of bytes to be sent. Because there are
two TCP connections, each internet datagram containing
a TCP segment is stored in a separate transmit buffer of
the Ethernet controller. This is needed so that TCP seg-
ments may be re-sent if they were not acknowledged by
the remote TCP on the remote server we are connected
with. The ‘X’ in the tcpXUnAck variable needs to be
replaced with 1 or 2 depending on which TCP connection
you are using.

2. TCPAppTxData - This function will be called as many
times as the value in tcpXUnAckMSB, LSB represents.
Each time the function exits it loads the data byte in the
working register into the TCP segment being con-
structed. Here you pass the data that you wish to trans-
mit to the TCP state machine.

3. TCPAppTxDone - This function is called only once
after the last call to TCPAppTxData. Your application can
use this as an acknowledgement that the data has been
sent. Also, if you need to make a decision after the send-
ing of data you would insert your code here. Note that
this function is not called to indicate that the data has
been successfully delivered to the remote server. It
doesn’t even mean that it was acknowledged yet by the
remote TCP. The outgoing internet datagram containing
your data will be loaded into the transmit buffer of the
Ethernet controller and will be re-transmitted every
approximately every 10 seconds until an acknowledge is
received from the remote TCP. There is however is time-
out implemented on the stack which will cause the TCP
connection to close and reset should there be no reply
from a remote TCP in about 30 seconds after the first
transmission was made.
© 2000 Ubicom, Inc. All rights reserved. - 13 - www.ubicom.com

Web Server & Send Email Client Implementation with Ethernet as the Physical Layer AN37
7.0 Using the UDP API
Since UDP is a connectionless protocol, UDP packets
are sent in a fire and forget fashion as opposed to TCP
which waits for an acknowledgment that a TCP segment
has indeed been received by a remote host. Note that
this acknowledgement does not mean that the remote
application received the data in the TCP segment. The
TCP/IP stack uses protocol state machines only for con-
nection-oriented protocols. The state machine would typ-
ically start out in a closed state and transition through
various states to an open state once a connection is
established. It could stay in a specific state until acknowl-
edges are received or until connections are open or
closed. Outgoing UDP packets are constructed and sent
immediately without waiting for a response from the des-
tination. Incoming UDP packets are handled by function
calls to UDP API functions in which you can insert your
application code.

To use the UDP API you may commonly want to do the
following:

1. Send data to a remote server

2. Receive data from a remote host

7.1 Listening for UDP packets
A UDP API function named UDPAppInit is called once
and never again when the TCP/IP stack software starts
executing. You have to specify the local UDP port num-
ber which to listen on for incoming UDP packets. The
function is shown below:

;
**

UDPAppInit

; Application UDP Initialization code (Example)

; This function is called automatically once by the stack
During startup

; [UDP API Function]

; INPUT: none

; OUTPUT: none

;
**

_bank UDP_BANK

mov udpRxDestPortMSB, #UDP_RX_DEST_MSB

mov udpRxDestPortLSB, #UDP_RX_DEST_LSB

retp

7.2 Handling incoming UDP data and sending UDP
data
Whenever a UDP packet is received on the listening port
specified in UDPAppInit, the TCP/IP stack software calls
the following functions:

1. UDPAppProcPktIn - This function is called only once
when a UDP packet is received. The stack also receives
UDP packets that were sent in broadcast mode, but
those packets are handled by other functions of the stack
that are not part of the UDP API. Therefore, UDPApp-
ProcPktIn is not called by the stack when a broadcast
UDP packet was received. Broadcast UDP packets are
commonly used by the DHCP protocol on this stack.

As opposed to the TCP state machine that calls TCPAp-
pRxData as many times as there are data bytes in the
received segment to pass the data to you application,
you must call NICReadAgain which will each time it is
called, retrieve a data byte from the received UDP
packet. The databyte is delivered in the working register.
The following variables also contains the value of the
number of databytes in the received UDP packet:udpRx-
DataLenMSB, LSB. The remote UDP port from which the
packet came is indicated in the value of a variable called
udpRxSrcPortMSB, LSB.

You can respond immediately to a received UDP packet
by calling UDPStartPktOut in UDPAppProcPktIn. Before
calling UDPStartPktOut, you will have to set up the local
UDP port number from which you will be sending the
packet as well as the remote UDP port number you will
be sending the packet to. Since you are immediately
responding to a UDP packet, the remote UDP port num-
ber will be available in variable udpRxSrcPortMSB, LSB.
The local UDP port is set up by udpTxSrcPortMSB, LSB
and the remote UDP port by udpTxDestPortMSB, LSB.
You will also have to set up a variable called udpTx-
DataLenMSB, LSB which indicates the number of data
bytes you will be transmitting in the UDP packet.

After the call to UDPStartPktOut you can load the
databytes into the UDP packet by loading each databytes
into the working register and calling NICWriteAgain after
each load. Once all the databytes are loaded you must
call UDPEndPktOut to end and send the UDP packet.
The sequence described above is shown below:

;
**

© 2000 Ubicom, Inc. All rights reserved. - 14 - www.ubicom.com

Web Server & Send Email Client Implementation with Ethernet as the Physical Layer AN37
UDPAppProcPktIn

; Application Incoming UDP packet handler (Example)

; This function is called whenever an application
(matches udpRxDestPortxSB)

; packet is received. The appplication can call
NICReadAgain() to extract

; sequentially extract each byte of the <data> field in the
UDP packet.

; [UDP API Function]

; INPUT: {udpRxDataLenMSB,udpRxDataLenLSB} =
number of bytes in UDP <data>

; {udpRxSrcPortMSB,udpRxSrcPortLSB} = UDP
<source_port>

; OUTPUT: none

;
**

call NICReadAgain_7 ; retrieve first databyte from UDP
packet

and w, #%01000000

xor ra, w; toggle I/O pins

_bank UDP_BANK

clr udpTxSrcPortMSB ; set up local UDP port

clr udpTxSrcPortLSB

mov udpTxDestPortMSB, udpRxSrcPortMSB ; set up
remote UDP port (reply to received UDP packet)

mov udpTxDestPortLSB, udpRxSrcPortLSB

mov udpTxDataLenMSB, #0 ; set up the number of
databytes to be loaded into the UDP packet

mov udpTxDataLenLSB, #2

call UDPStartPktOut

mov w, ra; send new port state, (set up databyte no1)

call NICWriteAgain_7 ; write databyte no1 into UDP
packet

mov w, #$00; one-byte padding, (set up databyte no2)

call NICWriteAgain_7 ; write databyte no2 into UDP
packet

call UDPEndPktOut

retp

You may also use the above code statements in a cus-
tom function called from the main loop if you need to peri-
odically transmit UDP packets or transmit a packet in
response to a local hardware trigger such as a switch
press. You will however need to set up a variable called
remoteIP3-0 with the remote IP address of the remote
server you are sending the UDP packet to. RemoteIP3-0
is also used by the other protocols on the stack and in the
above code example the remoteIP3-0 variable is already
set up with the correct IP address of the remote server
since we are replying immediately to an incoming UDP
packet. The variable was loaded by the TCP/IP stack
software when the UDP packet was received.
© 2000 Ubicom, Inc. All rights reserved. - 15 - www.ubicom.com

Web Server & Send Email Client Implementation with Ethernet as the Physical Layer AN37
8.0 Using the SMTP API
The SMTP API does not consist of function calls as does
the TCP API and UDP API. SMTP uses TCP as its carrier
or transport protocol to send and receive SMTP data.
The SMTP API thus consists only of pre-defined loca-
tions in program memory where you can insert SMTP
data. SMTP data commonly consists of sender and recip-
ient email addresses, a domain name and email text. The
locations in the source file where SMTP data is located
are indicated with assembler labels looking similar to the
TCP API function definitions. When we say that the
SMTP API “function” is “called” we will be meaning that
the SMTP data located in the SMTP API function will be
read by the SMTP state machine. The SMTP state
machine can also be called a part of the overall applica-
tion code called the send email client.

8.1 Using TCP as the carrier for SMTP data
Before the SMTP state machine can read the data stored
in the SMTP API locations, there has to be an estab-
lished TCP connection between the demo board and a
remote SMTP server. SMTP servers listen on TCP port
number 25 for incoming connections. You will therefore
have to insert “trigger code” in TCPApp1Init to establish a
TCP connection with a remote SMTP server.
TCPApp2Init cannot be used since it can only be used to
do a passive open of a TCP connection. Refer to 6.0
“Using the TCP API” for example code on using
TCPApp1Init to establish a TCP connection.

8.2 Starting the SMTP state machine
The SMTP state machine is implemented in the send
email client application code. The application code is
inserted in the TCP API functions since SMTP uses TCP
as its data carrier. This means that incoming SMTP data
will be delivered to the SMTP state machine in the
receive TCP API functions and outgoing SMTP data will
be loaded from the TCP API functions related to the
transmission of TCP segments. The SMTP state
machine is started by loading a variable called smtpState
with a value pre-defined as SMTP_CONNECT. This must
be done in TCPApp1Init since this function will not be
called again once the TCP connection is established.
The SMTP state machine does not actually start to do
anything until the TCP connection is open. Once the con-
nection is open, the send email client will connect with
the remote SMTP server to send an email.

8.3 Sending email
Email is commonly sent to SMTP servers listening on
TCP port 25. This is a universally well-known port num-
ber and is setup by setting SMTP_PORT_MSB and
SMTP_PORT_LSB to a value of 25. This may be
changed if using a private SMTP server listening at a dif-
ferent port.

The following SMTP API “functions” will be “called” by the
SMTP state machine once a TCP connection is open and
the state machine was started:

1. _SenderDomainName - The SMTP state machine
reads the databytes stored here as program words and

the send email client uses this domain name to identify
itself to the remote SMTP server. In the code shown
below, the domain name is sx. If you created an email
account for the demo board called board@acme.com,
the domain name will be acme.

;
**

_senderDomainName

; Contains the sender's domain name.

; [SMTP API function]

; INPUT: none

; OUTPUT: none

;
**

SMTPTEXT_HELO = $

dw 'HELO '

; insert the Domain name here

dw 'sx'

dw CR,LF

SMTPTEXT_HELO_END = $

2. _mailFrom - The SMTP state machine reads the
databytes stored here as program words and the send
email client uses this as the name of the sender. In the
code below, the sender’s name is sx. If the board’s email
address was created as board@acme.com, the sender’s
name would be board.

;
**

_mailFrom

; Contains the sender's name.

; [SMTP API function]

; INPUT: none

; OUTPUT: none

;
**

SMTPTEXT_MAIL=$

dw'MAIL FROM: '

; insert the sender's name here

dw'<sx>'

dwCR,LF

SMTPTEXT_MAIL_END=$
© 2000 Ubicom, Inc. All rights reserved. - 16 - www.ubicom.com

Web Server & Send Email Client Implementation with Ethernet as the Physical Layer AN37
3. _mailTo - The SMTP state machine reads the
databytes stored here as program words and uses this as
the email address of the recipient. In the code shown
below, the recipient’s email address is joe@demo.sx

;
**

_mailTo

; Contains the recipient's email address.

; [SMTP API function]

; INPUT: none

; OUTPUT: none

;
**

SMTPTEXT_RCPT=$

dw 'RCPT TO: '

; insert the recipient's email address here

dw '<joe@demo.sx>'

dw CR,LF

SMTPTEXT_RCPT_END=$

4. _mailData - The SMTP state machine reads the
databytes stored here as program words and uses this as
the email message text that is sent to the recipient. Stan-
dard fields interpreted by email programs such as Out-
look Express are commonly included in the email
message. Some of these fields are “From:, To: and Sub-
ject”.

;
**

_mailData

; Contains the mail message Data.

; [SMTP API function]

; INPUT: none

; OUTPUT: none

;
**

SMTPTEXT_TEXT=$

dw 'From: SX'

dw CR,LF

; insert To: field here

dw 'To: Joe'

dw CR,LF

; insert Subject: field here

dw 'Subject: Button Pressed!'

dw CR,LF,CR,LF

; insert body of email message here

dw 'Button SW2 pressed'

dw CR,LF,'.',CR,LF

SMTPTEXT_TEXT_END=$
© 2000 Ubicom, Inc. All rights reserved. - 17 - www.ubicom.com

Web Server & Send Email Client Implementation with Ethernet as the Physical Layer AN37
9.0 Application Programming Interface (API)
9.1 UDP Functions

9.1.1 UDPAppInit()
Application UDP Initialization code. This function is called automatically once by the stack during startup.
INPUT: none
OUTPUT: none

9.1.2 UDPAppProcPktIn()
Application Incoming UDP packet handler. This function is called whenever an application (matches udpRxDestPortxSB) packet is received. The
application can call NICReadAgain() to extract sequentially extract each byte of the <data> field in the UDP packet.
INPUT: {udpRxDataLenMSB,udpRxDataLenLSB} = number of bytes in UDP <data>
 {udpRxSrcPortMSB,udpRxSrcPortLSB} = UDP <source_port>
OUTPUT: none

9.1.3 UDPStartPktOut()
Starts an outgoing UDP packet by constructing an IP and UDP packet header.
INPUT: {remoteIP0-3} = destination IP addr for UDP pkt
 {udpTxSrcPortMSB,udpTxSrcPortLSB} = UDP Source Port
 {udpTxDestPortMSB,udpTxDestPortLSB} = UDP Destination Port
 {udpTxDataLenMSB,udpTxDataLenLSB} = UDP Data Length (just data)
OUTPUT: none

9.1.4 UDPEndPktOut()
Wraps up and transmits the UDP packet.
INPUT: none
OUTPUT: none

9.1.5 NICReadAgain()
Call this function to extract, one byte at a time, the data encapsulated in the UDP packet This function should be called within UDPAppProcPktIn().
INPUT: none
OUTPUT: w = byte read

9.1.6 NICWriteAgain()
Call this function to write, on byte at a time, the data to be sent in a UDP packet.This function should be called after calling UDPStartPktOut(),
and before calling UDPEndPktOut().
INPUT: w = byte to be written
OUTPUT: none

9.2 UDP Variables

9.2.1 remoteIP[3:0]
Destination IP address of outgoing packet, as well as, Source IP address of incoming packet.

9.2.2 myIP[3:0]
Source IP address of outgoing packet, as well as, filter for Destination IP address of incoming packets. This is usually set to the IP address assigned
to the SX.

9.2.3 UDPRxSrcPortMSB, UDPRxSrcPortLSB
Source UDP Port number of incoming packet.

9.2.4 UDPRxDestPortMSB, UDPRxDestPortLSB
Filter for Destination Port number of incoming UDP packets.

9.2.5 UDPRxDataLenMSB, UDPRxDataLenLSB
Length, in bytes, of the data field of incoming UDP packet.

9.2.6 UDPTxSrcPortMSB, UDPTxSrcPortLSB
Source UDP Port number of outgoing packet.

9.2.7 UDPTxDestPortMSB, UDPTxDestPortLSB
Destination UDP Port number of outgoing packet.

9.2.8 UDPTxDataLenMSB, UDPTxDataLenLSB
Length, in bytes, of the data field of incoming UDP packet.
© 2000 Ubicom, Inc. All rights reserved. - 18 - www.ubicom.com

Web Server & Send Email Client Implementation with Ethernet as the Physical Layer AN37
9.3 TCP Functions

9.3.1 TCPApp1Init()
TCP application no. 1 initialization code. Called repeatedly as long as TCP connection no. 1 state is closed.
INPUT: none
OUTPUT: none

9.3.2 TCPApp2Init()
TCP application no. 2 initialization code. Called repeatedly as long as TCP connection no. 2 state is closed.
INPUT: none
OUTPUT: none

9.3.3 TCPAppTxBytes()
Called before transmitting a TCP packet to see if the application has any data it wishes to send. The application cannot send more than
TCP_SEG_SIZE (1400) bytes at one go.
INPUT: none
OUTPUT: {tcp1UnAckMSB,tcp1UnAckLSB} = number of bytes to transmit on tcp connection no.1 or
{tcp2UnAckMSB,tcp2UnAckLSB} = number of bytes to transmit on tcp connection no.2

9.3.4 TCPAppRxBytes()
Indicator to the application that a packet has been received and that TCPAppRxByte is about to be called as many times as they are bytes of data.
INPUT: {tcpAppRxBytesMSB,tcpAppRxBytesLSB} = number of received data bytes
OUTPUT: none

9.3.5 TCPAppTxData()
This routine is called once for each byte the application has says it wishes to transmit.
INPUT: none
OUTPUT: w = data byte to transmit

9.3.6 TCPAppRxData()
Called once for each byte received in a packet.
INPUT: w = received data byte
OUTPUT: none

9.3.7 TCPAppTxDone()
This is called following the last call to TCPAppTxData(). It signifies the transmitted data has successfully reached the remote host.
INPUT: none
OUTPUT: none

9.3.8 TCPAppRxDone()
This is called following the last call to TCPAppRxData(). It signifies the end of the received packet.
INPUT: none
OUTPUT: none

9.3.9 TCPAppPassiveOpen()
Do a passive open. For example, listen for connections on a given port.
INPUT: {tcb1LocalPortMSB, tcb1LocalPortLSB} = TCP port to listen on for TCP connection no. 1 or
{tcb2LocalPortMSB, tcb2LocalPortLSB} = TCP port to listen on for TCP connection no. 2
OUTPUT: none

9.3.10 TCPAppActiveOpen()
For example, initiate a connect to a remote TCP.
INPUT: {tcb1LocalPortMSB, tcb1LocalPortLSB} = TCP port to listen on for TCP connection no. 1 or
{tcb2LocalPortMSB, tcb2LocalPortLSB} = TCP port to listen on for TCP connection no. 2
{tcb1RemotePortMSB, tcb1RemotePortLSB} = remote TCP port to establish connection with on TCP connection no. 1 or
{tcb2RemotePortMSB, tcb2RemotePortLSB} = remote TCP port to establish connection with on TCP connection no. 2
{sock1RemoteIP3-0} = remote IP address for TCP connection no. 1
{sock2RemoteIP3-0} = remote IP address for TCP connection no. 2
OUTPUT: none

9.3.11 TCPAppClose()
Force the current connection to close.
INPUT: none
OUTPUT: none
© 2000 Ubicom, Inc. All rights reserved. - 19 - www.ubicom.com

Web Server & Send Email Client Implementation with Ethernet as the Physical Layer AN37
9.4 Variables

9.4.1 sock1RemoteIP[3:0], sock2RemoteIP[3:0]
IP address of remote end-point for which a TCP connection has been, or is to be, established.

9.4.2 myIP[3:0]
IP address of local end-point. This is usually set to the IP address assigned to the SX.

9.4.3 tcb1LocalPortMSB, tcb1LocalPortLSB, tcb2LocalPortMSB, tcb2LocalPortLSB
Local TCP port number for each connection. A TCP connection ‘end-point’ is specified by the unique pair comprising of the node’s IP address, as
well as a socket, or ‘port’ number.

9.4.4 tcb1RemotePortMSB, tcb1RemotePortLSB, tcb2RemotePortMSB, tcb2RemotePortLSB
Remote TCP port number for each connection. A TCP connection ‘end-point’ is specified by the unique pair comprising of the node’s IP address,
as well as a socket, or ‘port’ number.

9.5 SMTP functions

9.5.1 _senderDomainName
Contains the send email client’s domain name. Example: If the Ethernet SX-Stack board’s email address is eSX@acme.com, the sender’s domain
name is acme.com.

9.5.2 _mailFrom
Contains the sender’s name. Example: If the EthernetSX-Stack board’s email address is eSX@acme.com, the sender’s name is eSX.

9.5.3 _mailTo
Contains the recipient’s email address. Example: If the Ethernet SX-Stack board sends an email to joe@demo.sx, the recipient’s email address is
joe@demo.sx

9.5.4 _mailData
Contains the data of the email message.

9.6 Variables

9.6.1 SMTP_SERVER_IP[3:0]
IP address of the SMTP server to be contacted when sending email. Example: If the SMTP server’s IP address is 168.75.232.39,
SMTP_SERVER_IP3=168, SMTP_SERVER_IP2=75, SMTP_SERVER_IP1=232, SMTP_SERVER_IP0=39

9.6.2 smtpState
Contains the current state of the SMTP state machine. Must be set equal to SMTP_CONNECT to start the state machine to send an email.

9.6.3 flags3.SMTP_OK
A flag that indicates if the SMTP state machine finished successfully (email accepted by remote SMTP server). Equals 1 if successful or 0 if error
encountered.
© 2000 Ubicom, Inc. All rights reserved. - 20 - www.ubicom.com

Web Server & Send Email Client Implementation with Ethernet as the Physical Layer AN37
Appendix A: Ethernet SX-Stack Demo Board Schematic
Following is the description of the key elements of the
schematic:

• The frequency of X1, the crystal/resonator, can be
changed by the user, since the TCP/IP protocol stack
is non-real time and operates almost exclusively in the
mainline context. Of course, certain restrictions apply.
For example, the receive buffer on the NIC should not
be allowed to overflow, or packets will be lost.

• R5 and C3 can be loaded in lieu of X1 for cost-reduc-
tion (will reduce SX speed to 20MIPS).

• The supplied code will only work with SX52 Revision
2.x silicon (the production-release version).

• Whilst the supplied reference design demonstration
code works with the prescribed I/O pinouts, in general,
the I/O pinouts can be changed with little modification
to the code.

• Some components in the reference design are only
used for demonstration purposes, please see the Bill-
of-Materials section for a list of the core components.

• Connectors J4, J5, and J6 are for future expansion.

• U3 is a 32KB I2C Serial EEPROM, and is used for stor-
ing web data only. Thus, users who do not need HTTP
need not have this component in their design.

• U1 (and associated components) and J1 are used for
reprogramming the Serial EEPROM (U3).

• R1, R7, R10, R11 and C7 implement a temperature
sensor, which will provide real-time data to be dis-
played on a dynamic web-page for demonstration pur-
poses.

• D1, R3 and S1 are for demonstration purposes only.
• The reference design hardcodes the 48-bit Ethernet

physical address in the SX, which is FLASH-repro-
grammable. The user can also store the physical ad-
dress in a separate configuration device by attaching a
9346 Serial 1k-bit EEPROM to BD[5:7] on U5. Refer to
Sect. 6.3 of the RTL8019AS datasheet for more infor-
mation.

• JP2 is the In-System-Programming (ISP) header. The
SX can be (re)programmed using just the OSC1and
OSC2 pins.

• For more information on U5, visit http://www.re-
altek.com.tw/cn . For information on ordering or pricing
on U5, visit http://www.realtek.com.tw/cn/contact/ser-
vice.htm .

• For more information on T1, visit http://www.both-
handusa.com/datasheets/filters/filters.htm .

• For information on ordering or pricing on X1, visit ht-
tp://www.murata.com/murata/murata.nsf/pag-
es/sales/#salesreps.
© 2000 Ubicom, Inc. All rights reserved. - 21 - www.ubicom.com

© 2000 Ubicom, Inc. All rights reserved. - 22 - www.Ubicom.com

Web Server & Send Email Client Implementation with Ethernet as the Physical Layer AN37

5 5

4 4

3 3

2 2

1 1

D
D

C
C

B
B

A
A

S
c
e
n
i
x

c
o
m
m
s

c
o
n
t
r
o
l
l
e
r

E
t
h
e
r
n
e
t

c
o
n
t
r
o
l
l
e
r

R
X

T
X

C
O
L

1
0
B
a
s
e
T

E
t
h
e
r
n
e
t

p
o
r
t

E
t
h
e
r
n
e
t

s
t
a
t
u
s

L
E
D
s

S
c
e
n
i
x

I
S
P

p
o
r
t

V
S
S

V
D
D

O
S
C
2

O
S
C
1

P
o
w
e
r

S
u
p
p
l
y

P
o
w
e
r

O
N

E
t
h
e
r
n
e
t

t
r
a
n
s
f
o
r
m
e
r

R
e
s
o
n
a
t
o
r

S
X

d
e
c
o
u
p
l
i
n
g

S
i
g
m
a

D
e
l
t
a

C
o
n
v
e
r
s
i
o
n

T
e
m
p
e
r
a
t
u
r
e

S
e
n
s
o
r

C
i
r
c
u
i
t

R
S
2
3
2

d
e
b
u
g

p
o
r
t

R
S
2
3
2

l
e
v
e
l

c
o
n
v
e
r
t
e
r

I
2
C

S
t
o
r
a
g
e

F
l
a
s
h

C
o
n
t
r
o
l

L
E
D

R
T
L
8
0
1
9
A
S

d
e
c
o
u
p
l
i
n
g

J
V
M

p
o
r
t

U
s
e
r

e
x
p
a
n
s
i
o
n

p
o
r
t

39
 o

hm
 @

 1
00

M
H

z

39
 o

hm
 @

 1
00

M
H

z

1
1
36

-0
1-

00
1-

02
02

0

S
X

 E
th

e
rn

e
t

R
e

fe
re

n
ce

 D
e

si
g

n

1
3

3
0

 C
h

a
rl
e

st
o

n
 R

o
a

d

C
F

ri
d

a
y,

 S
e

p
te

m
b

e
r

1
5

,
2

0
0

0

M
o

u
n

ta
in

 V
ie

w
,

C
A

 9
4

0
4

3
(6

5
0

)
2

1
0

-1
5

0
0

E
T

H
-K

IT
.D

S
N

1
D

e
o

n
 R

o
e

lo
fs

e
1

T
itl

e

S
iz

e
D

o
cu

m
e

n
t

N
u

m
b

e
r

R
e

v

D
a

te

S
h

e
e

t
o

f

A
p

p
ro

ve
d

F
ile

n
a

m
e

D
e

si
g

n
e

d
 b

y
P

a
ra

g
o

n
 I

n
n

o
va

tio
n

s,
 I

n
c.

e
m

a
il:

 in
fo

@
p

a
ra

g
o

n
-t

x.
co

m

D
ra

w
n

B
y

S
D

[7
..

0
]

S
D

2

S
A

3

S
D

7

S
D

3
S

D
2

S
D

6

S
D

6

S
D

1

S
D

1

S
A

0

S
A

2

S
D

0

S
A

1

S
D

3

S
A

4

S
D

4
S

D
5

S
D

7

S
A

3

S
A

2

S
D

5

S
D

0

S
A

1
S

A
0

S
D

4

S
A

4

R
D

0

S
A

[4
..

0
]

R
E

0

R
S

-C
T

S
R

S
-R

T
S

S
C

L

S
W

T
C

L
E

D

R
E

6
R

E
7

S
W

T

R
X

D

C
T

S C
T

S
R

T
S

R
T

S
T

X
D T
X

D

R
X

D

R
S

-R
X

D

R
S

-R
X

D

R
S

-T
X

D

R
S

-T
X

D

R
S

-R
T

S
R

S
-C

T
S

S
D

A

S
D

A

S
C

L

C
L

E
D

R
D

0
R

D
1

R
D

2
R

D
3

R
D

4
R

D
5

R
D

6
R

D
7

R
D

0
R

D
1

R
D

2
R

D
3

R
D

4
R

D
5

R
D

6
R

D
7

R
E

0
R

E
1

R
E

2
R

E
3

R
E

4
R

E
5

R
E

6
R

E
7

R
E

1
R

E
2

R
E

3
R

E
4

R
E

5

R
D

1
R

D
2

R
D

3
R

D
4

R
D

5
R

D
6

R
D

7

R
E

S
E

T

R
E

S
E

T

R
E

0
R

E
1

R
E

2
R

E
3

R
E

4
R

E
5

+
5V

+
5

V

+
5

V

+
5

V

+
5

V

+
5V

+
5

V

+
5

V

+
5V

+
5

V

+
5

V

+
5

V

+
5V

+
5V

+
5

V

+
5

V

+
5

V

+
5

V

+
5

V

+
5

V

+
5V

C
1

1
1

u
F

C
1

7
0

.1
u

F

C
3

N
P

C
5

0
.1

u
F

C
4

0
.1

u
F

R
5

N
P

X
2

2
0

M
H

z

C
8

0
.1

u
F

C
2

5

0
.0

1
u

F

C
2

3
N

P

D
4 L
E

D

J2

A
M

P
 R

J4
5

A

1 2 3 4 5 6 7 8

R
7

1
0

K

R
8

4
7

0

F
B

1

F
e

rr
ite

 b
e

a
d

R
2

1
0

K

R
6

4
.7

K

JP
3 1

2

C
1

2
1

u
F

JP
4

H
E

A
D

E
R

 9
X

2

1
2

3
4

5
6

7
8

9
1

0
1

1
1

2
1

3
1

4
1

5
1

6
1

7
1

8

R
1

3
4

7
0

U
1

IC
L

2
3

2
C

B
E

1
3

8
1

1

1
0 1 3 4 5 2 61
2 9

1
4

7 1
6

1
5

R
1

IN

R
2

IN
T

1
IN

T
2

IN

C
1

+
C

1
-

C
2

+
C

2
-

V
+

V
-

R
1

O
U

T

R
2

O
U

T
T

1
O

U
T

T
2

O
U

T

V
C

C

G
N

D

R
T

L
8

0
1

9
A

S

U
5

12345
5

7
7 8 9 1
0

1
1

1
2

1
3

1
4

1
5

1
6

7
0

1
8

1
9

2
0

2
1

2
2

2
3

2
4

2
5

2
6

2
7

5
2

2
9

3
0

5
1

4
9

4
8

4
7

4
5

4
6

8
6

4
3

4
2

4
1

4
0

3
9

3
8

3
7

3
6

3
5

3
4

3
3

3
2

3
1

8
0

7
9

7
8

7
7

7
6

7
5

7
4

7
3

7
2

7
1

1
7

6
9

6
8

6
7

6
6

6
5

6
4

6
3

6
2

6
1

6
0

5
9

5
8

8
9

5
6

5
5

5
4

5
3

2
8

5
0

8
1

8
2

4
4

8
4

8
5

8
3

8
7

8
8

6 9
0

9
1

9
2

9
3

9
4

9
5

9
6

9
7

9
8

9
9

1
0

0
IN

T
3

IN
T

2
IN

T
1

IN
T

0

S
A

0
V

D
D

S
A

1
S

A
2

S
A

3
S

A
4

S
A

5
S

A
6

S
A

7

G
N

D

S
A

8
S

A
9

V
D

D

S
A

1
0

S
A

1
1

S
A

1
2

S
A

1
3

S
A

1
4

S
A

1
5

S
A

1
6

S
A

1
7

S
A

1
8

S
A

1
9

G
N

D

IO
R

B
IO

W
B

X
2

T
X

+
T

X
-

V
D

D

T
P

O
U

T
+

T
P

O
U

T
-

G
N

D

S
D

7
S

D
6

S
D

5
S

D
4

S
D

3
S

D
2

S
D

1
S

D
0

IO
C

H
R

D
Y

A
E

N

R
S

T
D

R
V

S
M

E
M

W
B

S
M

E
M

R
B

B
D

4
B

D
5

B
D

6
B

D
7

E
E

C
S

B
C

S
B

B
A

1
4

B
A

1
5

B
A

1
6

B
A

1
7

V
D

D

B
A

1
8

B
A

1
9

B
A

2
0

B
A

2
1

JP A
U

I

L
E

D
2

L
E

D
1

L
E

D
0

L
E

D
B

N
C

T
P

IN
+

T
P

IN
-

V
D

D

R
X

+
R

X
-

C
D

+
C

D
-

G
N

D

X
1

B
D

3
B

D
2

G
N

D

B
D

1
B

D
0

G
N

D

S
D

1
5

S
D

1
4

V
D

D

S
D

1
3

S
D

1
2

S
D

1
1

S
D

1
0

S
D

9
S

D
8

IO
C

S
1

6
B

IN
T

7
IN

T
6

IN
T

5
IN

T
4

C
1

6
1

u
F

R
3

4
7

0

D
5 L
E

D

S
2

R
E

S
E

T

C
3

2
0

.0
1

u
F

R
1

2
4

7
0

C
1

5
1

u
F

D
1

L
E

D

C
2

7
0

.1
u

F

JP
2

H
E

A
D

E
R

 4

1234

JP
5

6
0

0
m

il
D

IP
2

4

1 2 3 4 5 6 7 8 9 1
0

1
1

1
2

1
3

1
4

1
5

1
6

1
7

1
8

1
9

2
0

2
1

2
2

2
3

2
4

Web Server & Send Email Client Implementation with Ethernet as the Physical Layer AN37
Appendix B: Bill of Material
The reference designators highlighted in bold are components either used only for demonstration purposes, or whose
use is optional.

No Qty Ref Val Description Part no

1 2 C1,2 47uF 25V Electrolytic capacitor Panasonic: ECE-V1EA470UP

2 5 C10-12,15,16 1uF 16V Ceramic capacitor SMT0805 Panasonic: ECJ-2VF1C105Z

3 1 C13 0.1uF 50V Ceramic capacitor SMT0805 Panasonic: ECJ-2YB1H104K

4 4 C3,25,26,31,32 0.01uF Ceramic capacitor SMT1206 Panasonic: ECU-V1H103KBM

5 19 C4-9,14,17-
22,24,27,29,30

0.1uF 16V Ceramic capacitor SMT0603 Panasonic: ECJ-1VB1C104K

6 1 D1 - Orange LED Panasonic: LNJ808R8ERA

7 1 D2 1A 50V Rectifier diode MELF Diodes Inc: DL4001

8 2 D3,4 - Red LED Panasonic: LNJ208R8ARA

9 1 D5 - Green LED Panasonic: LNJ308G8TRA

10 1 D6 - Amber LED Panasonic: LNJ408K8ZRA

11 2 FB1,2 39 ohm Ferrite bead SMT0805 Panasonic: EXC-ML20A390U

12 1 J1 - 2.0mm Power jack SMT Cui Stack: PJ-002A

13 1 J2 - Modular connector AMP: 520426-4

14 2 JP1,6 - 10pin dual row male header Digikey: S2012-05-ND

15 1 JP2 - 4pin single row male header Digikey: S1012-04-ND

16 1 JP3 - 2pin single row male header Digikey: S1012-02-ND

17 1 JP4 - 18pin dual row male header Digikey: S2012-09-ND

18 1 R1 5K NTC thermistor SMT0805 Thermometrics: NC0805R502T10
19 1 R16 200 ohm 5% Carbon film resistor SMT0603 Panasonic: ERJ-3GSYJ201V
20 5 R2,4,7,10,14 10K 5% Carbon film resistor SMT0603 Panasonic: ERJ-3GSYJ103V
21 5 R3,5,8,9,12,13 470 ohm 5% Carbon film resistor SMT0603 Panasonic: ERJ-3GSYJ471V
22 3 R6,11,15 4.7K 5% Carbon film resistor SMT0603 Panasonic: ERJ-3GSYJ472V
23 2 S1,2 - Tact switch Omron: B3S-1002

24 1 T1 - Filter transformer Bothhand: FB2022

25 1 U1 - 5V RS232 transceiver SOIC16 Intersil: ICL232CBE

26 1 U2 - Comms controller PQFP52 Ubicom: SX52BD/PQ

27 1 U3 32Kx8 Serial EEPROM SOIC8 Microchip: 24LC256-I/SM

28 1 U4 5V 1A Voltage regulator D^2PAK ST: L7805CD2T

29 1 U5 - Ethernet controller QFP100-14 Realtek: RTL8019AS

30 1 X1 50MHz Ceramic resonator Murata: CSTCV50.00MXJ0H3

31 1 X2 20MHz Crystal CSM-7 ECS: ECS-200-20-5P
© 2000 Ubicom, Inc. All rights reserved. - 23 - www.ubicom.com

Web Server & Send Email Client Implementation with Ethernet as the Physical Layer AN37
Appendix C: References
1. AN23: PPP/UDP Virtual Peripheral Implementation

[Ubicom]
2. AN27: TCP Virtual Peripheral Implementation [Ubicom]
3. AN25: HTTP Virtual Peripheral Implementation [Ubi-

com]
4. RTL8019 Datasheet [Realtek]
5. RTL8019AS Datasheet [Realtek]
6. DP83905 Datasheet [National Semiconductor]

7. Internetworking with TCP/IP Volume I, 3rd Edition [Dou-
glas E. Comer]

8. RFC1533: DHCP Options
9. RFC1541: DHCP
10.RFC791: IP
11.RFC792: ICMP
12.RFC793: TCP
13.RFC951: BOOTP
14.RFC768: UDP
© 2000 Ubicom, Inc. All rights reserved. - 24 - www.ubicom.com

© 2000 Ubicom, Inc. All rights reserved. - 25 - www.ubicom.com

Sales and Tech Support Contact Information

For the latest contact and support information on SX devices, please visit the Ubicom website at www.ubicom.com.
The site contains technical literature, local sales contacts, tech support and many other features.

1330 Charleston Road
Mountain View, CA 94043

Contact: Sales@ubicom.com
http://www.ubicom.com

Tel.: (650) 210-1500
Fax: (650) 210-8715

Web Server & Send Email Client Implementation with Ethernet as the Physical Layer AN37

Lit #: AN37-04

