
© 1999 Scenix Semiconductor, Inc. All rights reserved. - 1 -

Scenix™ and the Scenix logo are trademarks of Scenix Semiconductor, Inc. All other trademarks mention
tive componies.
Application Note 22

Wing Poon
August 1999
Interfacing the SX to the ISA-XT Bus
The Industry Standard Architecture (ISA) bus is the bus
of pre-eminence (until very recently) in IBM-PC compati-
ble computers. It has since been adopted as the IEEE
P996 standard, and appears in other derivative stan-
dards such as PC/104 and PCMCIA.

The initial ISA bus was really an extension of the first
IBM-PC’s microprocessor bus: an Intel 8088 running at
4.77MHz. When the IBM-AT microcomputer emerged,
the bus was modified for use with the Intel 80286 micro-
processor running at 8MHz.

The 80286 had 16 external data signals, compared to the
8088’s 8. Also, the 80286 introduced pipelined address-
ing. These two facets make interfacing the ISA-AT (16-
bit) quite a bit more complex than interfacing to the ISA-
XT (8-bit) bus. This document addresses the ISA-XT bus.

Since the ISA bus is an extension of the microprocessor
bus, we would find essentially three groups of signals on
this bus: address, data and control.

The ISA-XT has 20 address lines: 6$3-6$4<. Thus it is
able to address 1Mbyte of data memory. The 8088 had
separate address spaces for memory versus I/O. The I/O
address space is defined only by 6$3-6$48. Thus the
8088 can address 64kBytes of I/O registers. However,
the designers of the IBM-PC thought that was way too
generous and passed a resolution that only 0100h -
03FFh were valid I/O addresses in the PC architecture,
hence reducing the cost of peripherals since then,
designers only need to look at $3-$<.
The data bus consists of 6'3-6':. This is a bi-directional
bus.

The control signals can be further subdivided into the fol-
lowing subgroups: read/write control, DMA control and
interrupts.

The ISA-XT bus connector has 62 pins; fortunately, for a
simple application, we only need to look at 22 signals:
6$3-<, 6'3-:, ,2:&-, ,25&-, &+5'< and 5(6(7.
Refer to Appendix A for the schematics of our demon-
stration circuit.

In this example, we will implement 4 readable and writ-
able registers mapped to a user-selectable I/O address
range (we recommend 0300h -0303h). The PC can then
read and write to these registers to effect functions on the

SX according to some pre-defined protocol. The circuit
can be modified very easily to implement more than 4
registers, if necessary.

There are two approaches to interfacing the SX to the
ISA bus: real-time/no-wait-state or handshake/wait-
stated. This documents describes the handshake/wait-
stated implementation.

The SX48/52 are among the very few 8-bit micro-control-
lers fast enough to implement a real-time/no-wait-state
interface method. While this method will allow the
SX48/52 (the SX18/28 do not have enough I/O pins for
this method) to directly connect to the ISA bus, it imposes
severe limitations on the software designer’s flexibility in
writing software on the SX, primarily because the SX
needs to respond to bus-activity in a real-time fashion.

The handshake/wait-stated approach does require the
use of external glue-logic, but a very minimal amount – in
our case, just two 74xx type ICs (~$0.50 total). U1 is an
8-bit equality comparator and U2 is a quad two-input
open-collector NAND gate.

U1 is used to decode the most-significant eight bits of the
I/O address: 6$><=5@. The +3 4,- (which we’ll also call
&6-, for chip-select) will be asserted if and only if two
conditions are met:

• The most-significant eight address bits, 6$><=5@ match
some pre-defined pattern

• An I/O read or write cycle is in progress
The second condition is necessary because the same set
of address lines is used for both memory accesses
(which we do not want to participate in) and I/O accesses
(which we do want to participate in).

U3a implements a negative-logic OR function on the read
and write strobes, ,25&- and ,2:&- respectively, and
allows &6- to become asserted only if either of the former
signals are asserted.

U1’s 4>3=9@ select the seven most-significant bits, [9:3],
of the desired address range. The design imposes a
restriction that bit[2] of the desired address range must
be zero. Bits[1:0] are decoded by the SX to refer to each
of the four addressable registers on the chip.
www.scenix.com

ed in this document are property of their respec-

Interfacing the SX to the ISA-XT Bus AN22
U3b and U3d are used to generate the handshaking sig-
nal, &+5'<. &+5'< is used to interface slower devices
onto the ISA bus. When deasserted, the PC will add wait-
states to the current bus cycle (read or write, I/O or mem-
ory), with no upper-bound limitation. &+5'< is a wired-
OR signal and is pulled high via a pull-up resistor on the
motherboard.

This section of the circuit can be taken out if the only
source of interrupt on the SX is a single PortB pin edge
interrupt. The SX, with is deterministic and fast interrupt
response, will be able to transact a bus cycle with zero
wait-states, if necessary. However, since many of our
customers use other sources of interrupts (e.g. RTCC),
we have added the handshaking circuitry to obviate the
need for real-time response to bus activity, thus making
the SX firmware designer’s job much easier.

Pin12 of U3d is what we’ll call the &+5'<B&75/ signal.
This output from the SX determines whether the hand-
shake circuitry is primed (&+5'<B&75/ = high), or
whether the SX is temporarily overriding the &+5'< sig-
nal (&+5'<B&75/ = low).

Here is how the handshaking is done:

Normally, Pin12 of U3d (&+5'<B&75/) is high, so when
&6- goes low, indicating a read/write access to the SX,
&+5'< is immediately deasserted, thus stalling the PC’s
processor. When the SX gets around to checking the &6-
line (via 5%3), it looks at ,2:&- and ,25&- to determine
what kind of bus cycle is in progress, looks at 6$>4=3@ to
determine which register to access, and either samples
6'>3=:@ (if a write cycle is indicated) or outputs data on
6'>3=:@ (if a read cycle is indicated). When this has been
done, it will set &+5'<B&75/ low which will force &+5'<
to be re-asserted. Then, the SX will continuously monitor
&6- to determine when it can exit from this override con-
dition. When &6- is deasserted, the SX sets
&+5'<B&75/ back high, which primes the handshaking
circuitry for the next I/O cycle.

PortC (6'>3=:@, is normally configured as an input, so
effectively disconnecting itself from the ISA bus, thus pre-
venting bus contention. It is set as an output only during a
read cycle, and then again, only temporarily.

It is worth noting that the chances of a glitch on &6- is
minimal. This is because the comparator’s 4 input is
always constant while its 3 input consists of two groups
of signals, {3309,*} and {3:}, that change at non-overlap-
ping times. This is further mitigated by the SX firmware
sampling &6- twice before a decision is made.

With the handshaking circuitry, the software designer can
choose to use either an edge-triggered interrupt or poll-
ing mechanism (off the RTCC interrupt, for example) to
complete the bus transaction. In the example code given
in Appendix B, 5%3 is configured as a negative-edge trig-
gered interrupt. However, you are free to implement an
approach whereby you periodically poll 5%3 (&6-) and
call the ISA code whenever 5%3 reads ‘0’.

You now have a very versatile interface that can be used
to control and communicate with other Virtual Peripherals
incorporated in the SX controller. Refer to the document
“An ISA to Single-channel I2C Multi-Master Implementa-
tion” for an example of what can be done.
© 1999 Scenix Semiconductor, Inc. All rights reserved. - 2 - www.scenix.com

AN22 Interfacing the SX to the ISA-XT Bus
1.0 Appendix A
; ISA_SX.asm
; Wing Poon . 7/28/99 . (C) Scenix Semiconductor, Inc.
; This code demonstrates how to interface an SX to the ISA-XT Bus.
; It implements 4 readable and writeable registers that are mapped to
; low-order address bits A1:A0.
; This implementation uses the PortB edge-triggered interrupt mechanism
; to trigger on a falling edge of CS*, but a polling mechanism can
; also be used.

; **************
; *** DEVICE ***
; **************

DEVICE PINS28,PAGES4,BANKS8,OSCHS,TURBO,STACKX,OPTIONX
RESET main

; *****************
; *** VARIABLES ***
; *****************

; *** Global ***
ORG $08

REG0 DS 1
REG1 DS 1
REG2 DS 1
REG3 DS 1
ISR_MODE_SAVE DS 1

; ***************
; *** EQUATES ***
; ***************

RA_DIR = %0000
RB_DIR = %00111101
RC_DIR_IN = %11111111
RC_DIR_OUT = %00000000

WKED_B = %00000001
WKEN_B = %11111110

DEBUG_CLK1 = ra.0 ; debugging use
DEBUG_DATA1 = ra.1 ; debugging use

CS = rb.0 ; chip-select (decode SA9:SA2)
CHRDY_CTRL = rb.1 ; CHRDY (channel-ready) arm/override
SA0 = rb.2 ; ISA: System Addr[0]
SA1 = rb.3 ; ISA: System Addr[1]
IORC = rb.4 ; ISA: I/O Read Control (active-low)
IOWC = rb.5 ; ISA: I/O Write Control (active-low)

SD = rc ; ISA: System Data[0:7]

; **************
; *** MACROS ***
; **************

; ***********
; *** ISR ***
; ***********

ORG 0
© 1999 Scenix Semiconductor, Inc. All rights reserved. - 3 - www.scenix.com

Interfacing the SX to the ISA-XT Bus AN22
isr
; save MODE register (cus we'll be changing it)
mov w, m
mov ISR_MODE_SAVE, w

mode #$9 ; WKPND_B
mov! rb, #0 ; clear int pending bit

; point FSR to the addressed register
mov fsr, #REG0
snb SA0
inc fsr
mov w, #2
snb SA1
add fsr, w

sb IOWC
jmp :writeCycle ; IOWC* is active-low
sb IORC
jmp :readCycle ; IORC* is active-low

jmp:isrExit

:writeCycle
mov indf, SD ; store data
clrb CHRDY_CTRL ; force CHRDY high

:writeWait
sb CS
jmp :writeWait ; wait for PC to acknowledge cycle completion
setb CHRDY_CTRL ; prime CHRDY for action again
jmp :isrExit

:readCycle
mode #$F ; Port Direction
mov !rc, #RC_DIR_OUT ; configure as output
mov SD, indf ; put out data
clrb CHRDY_CTRL ; force CHRDY high

:readWait
sb CS
jmp :readWait ; wait for PC to acknowledge cycle completion
setb CHRDY_CTRL ; prime CHRDY for action again
mov !rc, #RC_DIR_IN ; configure back as input
jmp :isrExit

:isrExit
; restore MODE register
mov w, ISR_MODE_SAVE
mov m, w

reti

; ********************
; *** MAIN PROGRAM ***
; ********************

main
; configure the device
mode #$F ; Port Directions
mov !ra, #RA_DIR
mov !rb, #RB_DIR
mov !rc, #RC_DIR_IN
clr ra
clr rb
clr rc
mode #$A ; WKED_B
mov !rb, #WKED_B
© 1999 Scenix Semiconductor, Inc. All rights reserved. - 4 - www.scenix.com

AN22 Interfacing the SX to the ISA-XT Bus
mode #$9 ; WKPND_B
mov !rb, #0
mode #$B ; WKEN_B
mov !rb, #WKEN_B

mov !option, #%01111111 ;enable W addressing

clr REG0
clr REG1
clr REG2
clr REG3

setb CHRDY_CTRL ; prime CHRDY for action

mainLoop
; Once initialized, the main code really doesn't need to do anything
; since the ISA interface code is entirely interrupt-driven.
; Here we output the contents of each register in turn in a synchronous
; bit-bang fashion just so as to verify the contents of the registers
mov w, REG0
call outReg
mov w, REG1
call outReg
mov w, REG2
call outReg
mov w, REG3
call outReg

mov w, #255
call delay
jmp mainLoop

; *******************
; *** SUBROUTINES ***
; *******************

outReg
; INPUT: W = byte to be shifted out (MSb first)
; OUTPUT: none

REPT 8
movb DEBUG_DATA1, wreg.7
setb DEBUG_CLK1
rl wreg
nop
clrb DEBUG_CLK1
ENDR
ret

delay
; INPUT: W = delay count
; OUTPUT: none

decsz wreg
jmp delay
ret

; *********************
; *** LOOKUP TABLES ***
; *********************

; ***********
; *** END ***
; ***********

END
© 1999 Scenix Semiconductor, Inc. All rights reserved. - 5 - www.scenix.com

Appendix B: Schematic

	Application Note 22
	Interfacing the SX to the ISA-XT Bus
	The Industry Standard Architecture (ISA) bus is the bus of pre-eminence (until very recently) in ...
	The initial ISA bus was really an extension of the first IBM-PC’s microprocessor bus: an Intel 80...
	The 80286 had 16 external data signals, compared to the 8088’s 8. Also, the 80286 introduced pipe...
	Since the ISA bus is an extension of the microprocessor bus, we would find essentially three grou...
	The ISA-XT has 20 address lines: SA0-SA19. Thus it is able to address 1Mbyte of data memory. The ...
	The data bus consists of SD0-SD7. This is a bi-directional bus.
	The control signals can be further subdivided into the following subgroups: read/write control, D...
	The ISA-XT bus connector has 62 pins; fortunately, for a simple application, we only need to look...
	Refer to Appendix A for the schematics of our demonstration circuit.
	In this example, we will implement 4 readable and writable registers mapped to a user-selectable ...
	There are two approaches to interfacing the SX to the ISA bus: real-time/no-wait-state or handsha...
	The SX48/52 are among the very few 8-bit micro-controllers fast enough to implement a real-time/n...
	The handshake/wait-stated approach does require the use of external glue-logic, but a very minima...
	U1 is used to decode the most-significant eight bits of the I/O address: SA[9:2]. The (P=Q)* (whi...
	The second condition is necessary because the same set of address lines is used for both memory a...
	U3a implements a negative-logic OR function on the read and write strobes, IORC* and IOWC* respec...
	U1’s Q[0:6] select the seven most-significant bits, [9:3], of the desired address range. The desi...
	U3b and U3d are used to generate the handshaking signal, CHRDY. CHRDY is used to interface slower...
	This section of the circuit can be taken out if the only source of interrupt on the SX is a singl...
	Pin12 of U3d is what we’ll call the CHRDY_CTRL signal. This output from the SX determines whether...
	Here is how the handshaking is done:
	Normally, Pin12 of U3d (CHRDY_CTRL) is high, so when CS* goes low, indicating a read/write access...
	PortC (SD[0:7]) is normally configured as an input, so effectively disconnecting itself from the ...
	It is worth noting that the chances of a glitch on CS* is minimal. This is because the comparator...
	With the handshaking circuitry, the software designer can choose to use either an edge-triggered ...
	You now have a very versatile interface that can be used to control and communicate with other Vi...

	1.0� Appendix A
	; ISA_SX.asm
	; Wing Poon . 7/28/99 . (C) Scenix Semiconductor, Inc.
	; This code demonstrates how to interface an SX to the ISA-XT Bus.
	; It implements 4 readable and writeable registers that are mapped to
	; low-order address bits A1:A0.
	; This implementation uses the PortB edge-triggered interrupt mechanism
	; to trigger on a falling edge of CS*, but a polling mechanism can
	; also be used.
	; **************
	; *** DEVICE ***
	; **************
	DEVICE PINS28,PAGES4,BANKS8,OSCHS,TURBO,STACKX,OPTIONX
	RESET main
	; *****************
	; *** VARIABLES ***
	; *****************
	; *** Global ***
	ORG $08
	REG0 DS 1
	REG1 DS 1
	REG2 DS 1
	REG3 DS 1
	ISR_MODE_SAVE DS 1
	; ***************
	; *** EQUATES ***
	; ***************
	RA_DIR = %0000
	RB_DIR = %00111101
	RC_DIR_IN = %11111111
	RC_DIR_OUT = %00000000
	WKED_B = %00000001
	WKEN_B = %11111110
	DEBUG_CLK1 = ra.0 ; debugging use
	DEBUG_DATA1 = ra.1 ; debugging use
	CS = rb.0 ; chip-select (decode SA9:SA2)
	CHRDY_CTRL = rb.1 ; CHRDY (channel-ready) arm/override
	SA0 = rb.2 ; ISA: System Addr[0]
	SA1 = rb.3 ; ISA: System Addr[1]
	IORC = rb.4 ; ISA: I/O Read Control (active-low)
	IOWC = rb.5 ; ISA: I/O Write Control (active-low)
	SD = rc ; ISA: System Data[0:7]
	; **************
	; *** MACROS ***
	; **************
	; ***********
	; *** ISR ***
	; ***********
	ORG 0
	isr
	; save MODE register (cus we'll be changing it)
	mov w, m
	mov ISR_MODE_SAVE, w
	mode #$9 ; WKPND_B
	mov ! rb, #0 ; clear int pending bit
	; point FSR to the addressed register
	mov fsr, #REG0
	snb SA0
	inc fsr
	mov w, #2
	snb SA1
	add fsr, w
	sb IOWC
	jmp :writeCycle ; IOWC* is active-low
	sb IORC
	jmp :readCycle ; IORC* is active-low
	jmp :isrExit
	:writeCycle
	mov indf, SD ; store data
	clrb CHRDY_CTRL ; force CHRDY high
	:writeWait
	sb CS
	jmp :writeWait ; wait for PC to acknowledge cycle completion
	setb CHRDY_CTRL ; prime CHRDY for action again
	jmp :isrExit
	:readCycle
	mode #$F ; Port Direction
	mov !rc, #RC_DIR_OUT ; configure as output
	mov SD, indf ; put out data
	clrb CHRDY_CTRL ; force CHRDY high
	:readWait
	sb CS
	jmp :readWait ; wait for PC to acknowledge cycle completion
	setb CHRDY_CTRL ; prime CHRDY for action again
	mov !rc, #RC_DIR_IN ; configure back as input
	jmp :isrExit
	:isrExit
	; restore MODE register
	mov w, ISR_MODE_SAVE
	mov m, w
	reti
	; ********************
	; *** MAIN PROGRAM ***
	; ********************
	main
	; configure the device
	mode #$F ; Port Directions
	mov !ra, #RA_DIR
	mov !rb, #RB_DIR
	mov !rc, #RC_DIR_IN
	clr ra
	clr rb
	clr rc
	mode #$A ; WKED_B
	mov !rb, #WKED_B
	mode #$9 ; WKPND_B
	mov !rb, #0
	mode #$B ; WKEN_B
	mov !rb, #WKEN_B
	mov !option, #%01111111 ;enable W addressing
	clr REG0
	clr REG1
	clr REG2
	clr REG3
	setb CHRDY_CTRL ; prime CHRDY for action
	mainLoop
	; Once initialized, the main code really doesn't need to do anything
	; since the ISA interface code is entirely interrupt-driven.
	; Here we output the contents of each register in turn in a synchronous
	; bit-bang fashion just so as to verify the contents of the registers
	mov w, REG0
	call outReg
	mov w, REG1
	call outReg
	mov w, REG2
	call outReg
	mov w, REG3
	call outReg
	mov w, #255
	call delay
	jmp mainLoop
	; *******************
	; *** SUBROUTINES ***
	; *******************
	outReg
	; INPUT: W = byte to be shifted out (MSb first)
	; OUTPUT: none
	REPT 8
	movb DEBUG_DATA1, wreg.7
	setb DEBUG_CLK1
	rl wreg
	nop
	clrb DEBUG_CLK1
	ENDR
	ret
	delay
	; INPUT: W = delay count
	; OUTPUT: none
	decsz wreg
	jmp delay
	ret
	; *********************
	; *** LOOKUP TABLES ***
	; *********************
	; ***********
	; *** END ***
	; ***********
	END

