
© 1999 Scenix Semiconductor, Inc. All rights reserved. - 1 -

Scenix™ and the Scenix logo are trademarks of Scenix Semiconductor, Inc. All other trademarks mention
tive componies.
Application Note 21

Wing Poon
September 1999
ISA to Single-Channel I2C Multi-Master
Implementation
1.0 Introduction
The I2C-bus is a common synchronous serial protocol
used by many Integrated Circuits to communicate with
each other. The ISA-bus is commonplace in Intel x86-
based PCs and embedded controllers. The I2C protocol
dictates that a device is, at any time, either a master or a
slave. A master always communicates with a slave, and
vice versa. Furthermore, a class of I2C Master devices –
I2C Multi-Masters – are cable of collision detection and
arbitration, thus allowing them to share the I2C-bus with
other Multi-Masters.

In this document, we examine an implementation of a I2C
Multi-Master that is interfaced through the ISA-bus. This
implementation provides the bridge for which the PC can
then communicate with I2C Slave devices.

A related document, “Interfacing the SX to the ISA-XT
Bus”, which should be read first, describes the hardware
and software components that allow the SX28 to talk
over the ISA-bus. This document builds on that platform,
showing the integration of an I2C Multi-Master Virtual
Peripheral in that same SX28 micro-controller.

The complete source-code (ISA_I2C.ASM) for this
project is available. Please refer to it as you work your
way through the rest of this document.

2.0 Source Code Structure
The source program is divided into sections, beginning
with the Device section. This merely specifies the fuse-
bits in the SX device.

The next section is Variables . Global variables are
bank-independent and are used to contain frequently
accessed data. Bank 0 ($10-$1F) is a bank dedicated for
I2C VP.

The ISR section contains the entire I2C and ISA VPs. In
other words, both VPs are entirely interrupt-driven, with
no mainline-code required, except for module initializa-
tions. Upon entry into the ISR, the I2C code is executed
first, followed by the ISA code.

The Main Program section calls the VPs initialization
code, then the mainline program spins in an infinite-loop,
doing nothing.

3.0 Interrupt-Service Routine
The I2C VP operates as a state-machine. There are
major-states and minor-states. Transitions between
minor-states is always fixed (increasing minor-state num-
bers). Transitions between major-states is dynamically
determined by external stimuli.

The I2C state-machine resides in the function
I2CM_ISR . There are 12 major-states in this state-
machine. For a description of each state, please refer to
the comments in the source code. The current state is
stored in the variable I2CM_state . The idle state has a
state value of zero. Within each major-state, there may
exist one or more minor-states. The current minor-state
is stored in the variable I2CM_sub_state .

Interfacing to the I2C VP and state-machine is done
through the following variables: I2CM_state ,
I2CM_address , I2CM_num_bytes, I2CM_data_buf
and I2CM_ctrl_stat . This is the interface between the
ISA VP and the I2C VP.

The ISA VP first checks the &6- pin and does nothing if it
is not asserted. However, if it is, it proceeds to check the
,2:&- and ,25&- pins to determine if a read or write
cycle is in progress. In both cases, 6$3 and 6$4 are then
looked at next to determine which of the four ISA addres-
sable registers (0 – 3) are being addressed.

A read cycle from three (0 – 2) of the four available regis-
ters merely retrieves the current values of the
I2CM_address , I2CM_num_bytes and
I2CM_ctrl_stat variables. A read of the fourth register
(3) retrieves one byte in the 7-byte I2CM_data_buf
array. There exists an index, I2CM_data_ptr , into this
data array, which is used to select which byte is read.
After the byte has been read, the pointer is incremented
by one.

A write cycle into registers 0 and 1 merely updates the
values of the I2CM_address and I2CM_num_bytes
variables. A write to register 3 will update one byte in the
I2CM_data_buf , again pointed to by I2CM_data_ptr ,
and will also cause the pointer to be incremented. A write
to register 2, the I2CM_ctrl_stat register, is special
because the act of writing this register will initiate an I2C-
bus transaction. The actual value that is written to this
register is irrelevant and will be ignored.
www.scenix.com

ed in this document are property of their respec-

ISA to Single-Channel I2C Multi-Master Implementation AN21
4.0 PC - I2C Interface
The PC’s interface to the ISA/I2C VP is done through the
following four registers: I2CM_address (base_addr+0),
I2CM_num_bytes (base_addr+1), I2CM_ctrl_stat
(base_addr+2) and I2CM_data (base_addr+3). This is
almost identical to the ISA – I2C interface except for
I2CM_data_buf , which is a 7-byte length variable, and
I2CM_data , which is a single-byte variable.

The PC I/O space is the range of addresses between
100h – 3FFh. The four registers required to interface to
the I2C VP can fall anywhere in this range, subject to the
following conditions:

• the 4 registers must fall on consecutive addresses
• the base address must be an integer multiple of 4
In the demonstration circuit (see “Interfacing the SX to
the ISA-XT Bus”), the base address is selectable by
means of seven switches. For the rest of this discussion,
a base address of 300h is assumed.

I2CM_address (base_addr+0)

All I2C devices have a 7-bit device address. The most-
significant 7-bits of this register reflects that address.
Bit0, the least-significant bit, should be a ‘0’ if the I2C
master (i.e. the SX) wishes to write to a slave device, or a
‘1’ if the master wishes to read from a slave device.

Important Note: A write to this register (regardless of
value) will reset the data buffer index pointer to point to
the start of the buffer.

I2CM_num_bytes (base_addr+1)

This refers to the number of data bytes to be transferred
in the upcoming I2C bus transaction. This number can be
between 0 and 7 (the upper limitation is due to the cur-
rent data buffer size of this I2C VP implementation). A
write of zero data bytes is useful for ‘pinging’, or checking
the presence of, slave devices on the I2C-bus.

Important Note: This register is modified by the I2C VP,
and will read zero after completion of a read or write
transaction.

I2CM_ctrl_stat (base_addr+2)

This register is a status register when read, and a control
register when written. When read, the following bits each
report a status condition (the bit is set to ‘1’ if the condi-
tion is true):

The Busy flag indicates that the I2C state-machine is
busy doing a read or write transaction. Before initiating a
new transaction, your application must check that this
flag is clear, or else it must wait. After starting the trans-
action (by writing a dummy value to this register), you
can repeatedly read this register – but any other reads or
writes to any other register is forbidden. If the requested

transaction was a read, the clearing of this flag (by the
I2C VP) indicates that the I2C read transaction is done
and the data is in the internal data buffer.

The NACK flag indicates that the I2C Master (SX) did not
receive an acknowledgment to the previous bus transac-
tion.

The Lost-Arbitration flag indicates that the last transac-
tion was aborted because a collision was detected and
the SX lost control of the bus to another master.

When the PC writes to this register, the I2C state-
machine is awakened from its idle state and will execute
the bus transaction set up by the other three registers. A
write to this register will automatically reset the data
buffer pointer, as well as set the Busy flag.

I2CM_data (base_addr+3)

This register is used to present the data for transmission
(in the case of a write request), or retrieve the data sent
by the slave device (in the case of a read request). It
accesses one byte in the 7-byte FIFO data buffer in the
I2C VP. Each subsequent read or write access to this
register will retrieve the next received byte or set the next
byte to be transmitted, respectively. A write to
I2CM_address will reset the internal pointer back to the
start of the buffer.

4.1 IMPORTANT CONSIDERATIONS
• After requesting a read transaction, poll the Busy flag

until it is cleared, at which point, you must do a dummy
write to the I2CM_address register (to reset the buffer
pointer), before starting to read I2CM_data .

• Severe problems will arise if you try to modify or read
registers (with the exception of reading the
I2CM_ctrl_stat register) while the I2C state-ma-
chine is busy.

• Remember there is a 7-byte limit to the number of data
bytes per transaction.

5.0 Example ‘C’ Application Program
Appendix A shows a example application, written in ‘C’,
that you can run on a PC to interface to this I2C control-
ler. The program is DOS-based, and can be compiled
with Borland C, Turbo C and DJGPP.

The demonstration circuit has a 24LC16B serial-
EEPROM slave device connected to the I2C-bus. This
program will read from and write to the EEPROM.

Upon starting, the program will print a help screen. There
are commands to dump the contents of the EEPROM,
read a specific address, or write to a specific address.

6.0 Summary
The Scenix SX micro-controller is in a league of its own in
terms of performance and versatility. The speed of the
part allows the SX to interface very easily to the PC’s
ISA-bus. The versatility of the part comes from the ability
for you, the designer, to incorporate complex Virtual
Peripherals, such as an I2C Multi-Master, along with
other VPs if desired, on one SX device, thereby reducing
system cost and complexity.

Bit Description

0 Busy flag

1 NACK flag

2 Reserved

3 Lost-Arbitration flag
© 1999 Scenix Semiconductor, Inc. All rights reserved. - 2 - www.scenix.com

AN21 ISA to Single-Channel I2C Multi-Master Implementation
7.0 Appendix A
/* I2C_DEMO.C */
/* Wing Poon.8/17/99.(C) Scenix Semiconductor, Inc.*/

#include <stdio.h>
#include <string.h>

#define I2C_BASE_ADDR 0x300
#define I2C_ADDRESS (I2C_BASE_ADDR+0)
#define I2C_NUM_BYTES (I2C_BASE_ADDR+1)
#define I2C_CTRL_STAT (I2C_BASE_ADDR+2)
#define I2C_DATA (I2C_BASE_ADDR+3)

#define EEPROM_ADDR 0xA0
#define EEPROM_ADDR_WR (EEPROM_ADDR & 0xFE)
#define EEPROM_ADDR_RD (EEPROM_ADDR | 0x01)

void eepromSetAddr(unsigned char addr) /* sets the current EEPROM address counter value */
{
 outportb(I2C_ADDRESS, EEPROM_ADDR_WR);
 outportb(I2C_NUM_BYTES, 1);
 outportb(I2C_DATA, addr);
 outportb(I2C_CTRL_STAT, 0);

while(inportb(I2C_CTRL_STAT)&0x01); /* wait for BUSY to be cleared */
}

unsigned char eepromSeqReadByte(void) /* read the byte pointed to by the EEPROM address
counter */
{

outportb(I2C_ADDRESS, EEPROM_ADDR_RD);
outportb(I2C_NUM_BYTES, 1);
outportb(I2C_CTRL_STAT, 0);
while (inportb(I2C_CTRL_STAT) & 0x01); /* wait for BUSY to be cleared */
outportb(I2C_ADDRESS, 0xA1); /* reset data buffer pointer */
return(inportb(I2C_DATA));

}

unsigned char eepromRanReadByte(unsigned char addr) /* read a byte at some random address */
{

eepromSetAddr(addr);
 return(eepromSeqReadByte());
}

void eepromRanReadBytes(unsigned char addr, unsigned char data, unsigned nbytes) /* read several bytes */
{
 int i;

 eepromSetAddr(addr);
 for (i = 0; i < nbytes; i++) {
 *(data+i) = eepromSeqReadByte();
 }
}

void eepromWriteByte(unsigned char addr, unsigned char data)/* write a byte at some random address */
{
 outportb(I2C_ADDRESS, EEPROM_ADDR_WR);
 outportb(I2C_NUM_BYTES, 2);
 outportb(I2C_DATA, addr);
 outportb(I2C_DATA, data);
 outportb(I2C_CTRL_STAT, 0);
 while(inport(I2C_CTRL_STAT) & 0x1); /* wait for BUSY to be cleared */
 do { /* wait for EEPROM-write to complete */
 outportb(I2C_NUM_BYTES, 0);
 outportb(I2C_CTRL_STAT, 0);
© 1999 Scenix Semiconductor, Inc. All rights reserved. - 3 - www.scenix.com

ISA to Single-Channel I2C Multi-Master Implementation AN21
 while(inportb(I2C_CTRL_STAT) & 0x01);
 } while(inportb(I2C_CTRL_STAT) & 0x02);
}

void eepromWriteBytes(unsigned char addr, unsigned char *data, int nbytes) /* write several bytes */
{
 int i;

 for (i = 0; i < nbytes; i++) {
 eepromWriteByte(addr+i, *(data+i));
 }
}

void printHelp(void)
{
 printf("\
 ISA - I2C Multi-Master Demonstration\n\
 ====================================\n\
\n\
 d <addr> <nbytes> : dumps <nbytes> starting at <addr>\n\
 w <addr> <value> : writes <value> at location <addr>\n\
 r <addr> : reads from location <addr>\n\
 q : quit\n\
\n");
}

int main(void)
{
 int i;
 unsigned u;
 unsigned char buf[256];
 char cmdLine[50];
 char cmd[2];
 unsigned op1, op2;

 printHelp();

 while (1) {
 printf("> ");
 gets(cmdLine);
 sscanf(cmdLine, "%s %x %x", cmd, &op1, &op2);

 if (strcmp(cmd, "d")==0) {
 eepromSetAddr(op1);
 for (i = 0; i < op2; i++) {
 printf("%.2X ", eepromSeqReadByte());
 }
 printf("\n");
 } else if (strcmp(cmd, "w")==0) {
 eepromWriteByte(op1, op2);
 printf("\n");
 } else if (strcmp(cmd, "r")==0) {
 printf("%.2X\n", eepromRanReadByte(op1));
 } else if (strcmp(cmd, "q")==0) {
 return 0;
 } else {
 printHelp();
 }
 }
}

Lit#: SXL-AN21-01
© 1999 Scenix Semiconductor, Inc. All rights reserved. - 4 - www.scenix.com

	Application Note 21
	ISA to Single-Channel I2C Multi-Master Implementation
	1.0� Introduction
	The I2C-bus is a common synchronous serial protocol used by many Integrated Circuits to communica...
	In this document, we examine an implementation of a I2C Multi-Master that is interfaced through t...
	A related document, “Interfacing the SX to the ISA-XT Bus”, which should be read first, describes...
	The complete source-code (ISA_I2C.ASM) for this project is available. Please refer to it as you w...

	2.0� Source Code Structure
	The source program is divided into sections, beginning with the Device section. This merely speci...
	The next section is Variables. Global variables are bank-independent and are used to contain freq...
	The ISR section contains the entire I2C and ISA VPs. In other words, both VPs are entirely interr...
	The Main Program section calls the VPs initialization code, then the mainline program spins in an...

	3.0� Interrupt-Service Routine
	The I2C VP operates as a state-machine. There are major-states and minor-states. Transitions betw...
	The I2C state-machine resides in the function I2CM_ISR. There are 12 major-states in this state- ...
	Interfacing to the I2C VP and state-machine is done through the following variables: I2CM_state, ...
	The ISA VP first checks the CS* pin and does nothing if it is not asserted. However, if it is, it...
	A read cycle from three (0 – 2) of the four available registers merely retrieves the current valu...
	A write cycle into registers 0 and 1 merely updates the values of the I2CM_address and I2CM_num_b...

	4.0� PC - I2C Interface
	The PC’s interface to the ISA/I2C VP is done through the following four registers: I2CM_address (...
	The PC I/O space is the range of addresses between 100h – 3FFh. The four registers required to in...
	In the demonstration circuit (see “Interfacing the SX to the ISA-XT Bus”), the base address is se...
	I2CM_address (base_addr+0)
	All I2C devices have a 7-bit device address. The most- significant 7-bits of this register reflec...
	Important Note: A write to this register (regardless of value) will reset the data buffer index p...
	I2CM_num_bytes (base_addr+1)
	This refers to the number of data bytes to be transferred in the upcoming I2C bus transaction. Th...
	Important Note: This register is modified by the I2C VP, and will read zero after completion of a...
	I2CM_ctrl_stat (base_addr+2)
	This register is a status register when read, and a control register when written. When read, the...

	Bit
	Description
	0
	Busy flag
	1
	NACK flag
	2
	Reserved
	3
	Lost-Arbitration flag
	The Busy flag indicates that the I2C state-machine is busy doing a read or write transaction. Bef...
	The NACK flag indicates that the I2C Master (SX) did not receive an acknowledgment to the previou...
	The Lost-Arbitration flag indicates that the last transaction was aborted because a collision was...
	When the PC writes to this register, the I2C state- machine is awakened from its idle state and w...
	I2CM_data (base_addr+3)
	This register is used to present the data for transmission (in the case of a write request), or r...
	4.1� Important Considerations
	5.0� Example ‘C’ Application Program
	Appendix A shows a example application, written in ‘C’, that you can run on a PC to interface to ...
	The demonstration circuit has a 24LC16B serial- EEPROM slave device connected to the I2C-bus. Thi...
	Upon starting, the program will print a help screen. There are commands to dump the contents of t...

	6.0� Summary
	The Scenix SX micro-controller is in a league of its own in terms of performance and versatility....

	7.0� Appendix A

	/* I2C_DEMO.C */
	/* Wing Poon.8/17/99.(C) Scenix Semiconductor, Inc.*/
	#include <stdio.h>
	#include <string.h>
	#define I2C_BASE_ADDR 0x300
	#define I2C_ADDRESS (I2C_BASE_ADDR+0)
	#define I2C_NUM_BYTES (I2C_BASE_ADDR+1)
	#define I2C_CTRL_STAT (I2C_BASE_ADDR+2)
	#define I2C_DATA (I2C_BASE_ADDR+3)
	#define EEPROM_ADDR 0xA0
	#define EEPROM_ADDR_WR (EEPROM_ADDR & 0xFE)
	#define EEPROM_ADDR_RD (EEPROM_ADDR | 0x01)
	void eepromSetAddr(unsigned char addr) /* sets the current EEPROM address counter value */
	{
	outportb(I2C_ADDRESS, EEPROM_ADDR_WR);
	outportb(I2C_NUM_BYTES, 1);
	outportb(I2C_DATA, addr);
	outportb(I2C_CTRL_STAT, 0);
	while(inportb(I2C_CTRL_STAT)&0x01); /* wait for BUSY to be cleared */
	}
	unsigned char eepromSeqReadByte(void) /* read the byte pointed to by the EEPROM address counter */
	{
	outportb(I2C_ADDRESS, EEPROM_ADDR_RD);
	outportb(I2C_NUM_BYTES, 1);
	outportb(I2C_CTRL_STAT, 0);
	while (inportb(I2C_CTRL_STAT) & 0x01); /* wait for BUSY to be cleared */
	outportb(I2C_ADDRESS, 0xA1); /* reset data buffer pointer */
	return(inportb(I2C_DATA));
	}
	unsigned char eepromRanReadByte(unsigned char addr) /* read a byte at some random address */
	{
	eepromSetAddr(addr);
	return(eepromSeqReadByte());
	}
	void eepromRanReadBytes(unsigned char addr, unsigned char data, unsigned nbytes) /* read several ...
	{
	int i;
	eepromSetAddr(addr);
	for (i = 0; i < nbytes; i++) {
	*(data+i) = eepromSeqReadByte();
	}
	}
	void eepromWriteByte(unsigned char addr, unsigned char data) /* write a byte at some random addre...
	{
	outportb(I2C_ADDRESS, EEPROM_ADDR_WR);
	outportb(I2C_NUM_BYTES, 2);
	outportb(I2C_DATA, addr);
	outportb(I2C_DATA, data);
	outportb(I2C_CTRL_STAT, 0);
	while(inport(I2C_CTRL_STAT) & 0x1); /* wait for BUSY to be cleared */
	do { /* wait for EEPROM-write to complete */
	outportb(I2C_NUM_BYTES, 0);
	outportb(I2C_CTRL_STAT, 0);
	while(inportb(I2C_CTRL_STAT) & 0x01);
	} while(inportb(I2C_CTRL_STAT) & 0x02);
	}
	void eepromWriteBytes(unsigned char addr, unsigned char *data, int nbytes) /* write several bytes */
	{
	int i;
	for (i = 0; i < nbytes; i++) {
	eepromWriteByte(addr+i, *(data+i));
	}
	}
	void printHelp(void)
	{
	printf("\
	ISA - I2C Multi-Master Demonstration\n\
	====================================\n\
	\n\
	d <addr> <nbytes> : dumps <nbytes> starting at <addr>\n\
	w <addr> <value> : writes <value> at location <addr>\n\
	r <addr> : reads from location <addr>\n\
	q : quit\n\
	\n");
	}
	int main(void)
	{
	int i;
	unsigned u;
	unsigned char buf[256];
	char cmdLine[50];
	char cmd[2];
	unsigned op1, op2;
	printHelp();
	while (1) {
	printf("> ");
	gets(cmdLine);
	sscanf(cmdLine, "%s %x %x", cmd, &op1, &op2);
	if (strcmp(cmd, "d")==0) {
	eepromSetAddr(op1);
	for (i = 0; i < op2; i++) {
	printf("%.2X ", eepromSeqReadByte());
	}
	printf("\n");
	} else if (strcmp(cmd, "w")==0) {
	eepromWriteByte(op1, op2);
	printf("\n");
	} else if (strcmp(cmd, "r")==0) {
	printf("%.2X\n", eepromRanReadByte(op1));
	} else if (strcmp(cmd, "q")==0) {
	return 0;
	} else {
	printHelp();
	}
	}
	}
	Lit#: SXL-AN21-01

