Playfield Graphics Tutorial

Part 7 – Sprite Reuse

by Greg Smith

Introduction:

Part-7 is perhaps the most difficult of this series – because we don’t really add anything new to the program except the method used to display sprites.  Up until now we have let the graphics engine display all the sprites.  We gave it the X/Y coordinates and said “redraw” and everything came out lovely.

But as the program gets more advanced we need more control over the way the sprites are displayed.  Did you wonder to yourself during Part-6 “Why are we using the same sprite 19 times for the money?  Wouldn’t it be more efficient to use the same sprite over and over again?”  And of course the answer is “Yes”.

Double Buffering

In this part of the tutorial, we’ll load the “money.pic” sprite once into Sprite 1 and use it to “stamp” pictures of the money on each of the screens.  To accomplish this we have to turn automatic “Show” off.

OPTION SHOW OFF

Normally, when we use any of the graphic functions like printxy, or redraw, or line, the result of the command is immediately apparent on the screen.  That is because an internal drawing function called “Show” is executed right away.  You see, all graphics commands are actually drawn on a backing display called a buffer.  The buffer is drawn on until a “Show” is performed.  Then it becomes visible to the user.  This technique of buffering graphics is called “double-buffering”.

Because B2C was created for the first time programmer, this Show was performed after each graphics command.  The problem is it’s very inefficient.  It makes more sense to draw everything in the buffer then do a Show at the end (rather than a Show after every command).  This is why so many B2C programs are both slow and display lots of flicker.

Sprite Reuse

To use the same sprite over and over again, we have to first load the sprite into memory.  Then we move the sprite to the first location, call the redraw function for that sprite (and that sprite only).  Then move the sprite to the next location and redraw it.  And so on.  Each time we redraw the sprite it acts like a “stamp” imprinting an image of the sprite on the buffered display.  Finally, when all the sprites have been imprinted, we call “Redraw Show” and the buffer is copied to the main display for the user to see.  Here is a sample :

Sprite 1, “money.pic”

CLS

Move 1, 0, 0 ‘upper left of screen

Redraw 1 ‘ imprint the money on the buffered display

Move 1, 50, 50 ‘middle of screen

Redraw 1 ‘imprint the money on the buffered display 

Move 1, 100, 75 ‘lower right of screen

Redraw 1 ‘imprint the money on the buffered display

Redraw Show ‘ show the buffer to the user “Show me the Money!”

What We’re Doing

In this part of the program we are actually gearing up for a fully data-driven program.  Instead of loading the same sprite over and over again, we create a little list of names of sprites we’ve already loaded.  A function (Load_sprite) is created which takes a sprite’s filename and returns a sprite number.  If the sprite’s filename is not in our list, we add it to the list and load the sprite and return the sprite number.  If the sprite’s filename IS in our list we just return the sprite number.

We are also modifying the repaint logic to use sprites over and over again.  And we change the collision logic.  I’ll explain those in more detail below.

The Program

'''

''' playfield tutorial - part 7

''' sprite sharing

'''

''' by greg smith

'''

'''

''' use c coordinates

'''

OPTION C_COORDS

'''

''' turn off escape processing for speed

'''

OPTION ESCAPE OFF

'''

''' turn off automatic graphics show

'''

OPTION SHOW OFF

dim x as int  'position of lemming from 0-480

dim y as int  'position of lemming from 0-300

dim z_dir as int  'which direction of lemming

dim z_cnt as int  'animation image of lemming

dim sprite_field as int 'the sprite number of the playfield sprites

dim sprite_lemming as int   'the sprite number of the lemming sprites

dim lemming_left as int     'index into lemming sprite for going left

dim lemming_right as int    'index into lemming sprite for going right

dim lemming_up as int       'index into lemming sprite for going up

dim lemming_down as int     'index into lemming sprite for going down

dim collision_street as char     'the street's collision value

dim collision_pf0 as char        'playfield 0

dim collision_pf9 as char        'playfield 9

dim collision_table[30,31] as char 'the collision table

dim obj_ctr as int        'the next object to be allocated

dim current_playfield as int 'the current playfield onscreen

dim current_screen as int

dim points as long           'your score

dim n_playfields as int      'the number of playfields

dim current_sprite as int    'the number of loaded sprites

type obj                     'the sprite object

    mysprite as int          'my sprite number

    x as int                 'x coord on screen (0-159)

    y as int                 'y coord on screen (0-99)

    playfield as int         'playfield this sprite belongs on

    screen as int            'screen within playfield (0-9)

    amt as int               'points for catching this sprite

    sound[32] as char        'the sound to make

end type

dim objs[40] as obj        'all the sprites

dim sprite_names[30,32] as char ' sprite names

'''

''' update file - copy file from app to flash

'''

sub update_file(fname[] as char)

    inline File_remove(fname);

    inline _load(fname);

end sub

'''

''' initialization

'''

sub init

    update_file("playfield1.dat") 'get the .dat file into flash

    update_file("playfield2.dat")

    sprite_field = 0       'playfield sprite

    sprite_lemming = 31    'lemming sprite is largest possible sprite - on top

    lemming_left=0        'lemming left image

    lemming_right=5       'lemming right image

    lemming_up=10         'lemming up image

    lemming_down=15       'lemming down image

    '''

    ''' the lemming has 20 bitmaps 5 for each direction

    sprite sprite_lemming, "lemming.pic"

    '''

    ''' the lemming can be anywhere on the playfield from

    ''' x = 0-480

    ''' y = 0-300

    x=240  'center of the playfield

    y=150  'center of the playfield

    z_dir=lemming_right  ' lemming faces right

    z_cnt=0              ' animation counter

    '''

    ''' set the collision flags

    '''

    collision_street = \x\

    collision_pf0 = \0\

    collision_pf9 = \9\

    obj_ctr=0    'initialize the object counter

    points = 0      'reset points

    n_playfields = 2   'maximum number of playfields

    current_sprite = 1 'the next sprite number available

    obj_init_all    'init all objects

end sub

sub repaint

    dim field_x as int   '0,1,2 for the horizontal bitmap

    dim field_y as int   '0,1,2 for the vertical bitmap

    dim lemming_x as int     '0-159 for the x coord on the screen

    dim lemming_y as int     '0-99  for the y coord on the screen

    dim obj_x as int        ' position of the object

    dim obj_y as int        ' position of the object

    dim obj_field_x as int

    dim obj_field_y as int

    dim obj_field as int

    dim i as int

    field_x = x / 160    ' compute the horizontal bitmap

    field_y = y / 100    ' compute the vertical bitmap

    current_screen = field_y*3 + field_x ' combine them to compute the bitmap number

    lemming_x = x mod 160  ' compute the lemming's position on the screen

    lemming_y = y mod 100  ' compute the lemming's position on the screen

    move sprite_field, 0, 0, current_screen 'display the current field

    redraw sprite_field

    paper white  'transparent color for the lemming

    ink ltgrey

    '''

    ''' iterate across all sprites and display

    '''

    for i=0 to obj_ctr-1

        '''

        ''' if the sprite is on the current playfield

        ''' and the sprite is not hidden (x=-1) then

        ''' if the sprite is on the current screen then display it

        '''

        if objs[i].playfield=current_playfield and objs[i].x >= 0 then

            if objs[i].screen = current_screen then ' is the sprite on-screen?

                move objs[i].mysprite, objs[i].x, objs[i].y

                redraw objs[i].mysprite

             endif

        endif

    next 'i

    '''

    ''' display points

    '''

    ink white

    font "mini_bold_font"

    printxy 0,0,points

    move sprite_lemming, lemming_x, lemming_y, z_dir+z_cnt 'display the lemming 

    redraw sprite_lemming

    redraw show        'redraw all the sprites

end sub

'''

''' increment the z_cnt variable

'''

sub update_z_cnt

    z_cnt=(z_cnt+1) MOD 5

end sub

'''

''' check for collision against table

'''

function collision_check(x as int, y as int) as char

    collision_check = collision_table[y/10,x/16]

end function

'''

''' transport lemming to another playfield

'''

sub transport(f as int)

    init_playfield(f)

    if f=1 then

        x=240

        y=150

    elseif f=2 then

        x=230

        y=150

    endif

end sub

'''

''' process the keyboard

'''

sub get_keys

    dim tmp as int

    dim cc as int

    if key(#KEY_UP) then   'move the lemming up

        tmp=y-3

        cc = collision_check(x,tmp)

        if cc = collision_street then

            y=tmp

            z_dir=lemming_up

            update_z_cnt

        end if

        if cc >= collision_pf0 and cc <= collision_pf9 then

            transport(cc-collision_pf0)

        end if

    end if

    if key(#KEY_DOWN) then 'move the lemming down

        tmp=y+3

        cc = collision_check(x,tmp)

        if cc = collision_street then

            y=tmp

            z_dir=lemming_down

            update_z_cnt

        end if

        if cc >= collision_pf0 and cc <= collision_pf9 then

            transport(cc-collision_pf0)

        end if

    end if

    if key(#KEY_LEFT) then 'move the lemming left

        tmp=x-3

        cc = collision_check(tmp,y)

        if cc = collision_street then

            x=tmp

            z_dir=lemming_left

            update_z_cnt

        end if

        if cc >= collision_pf0 and cc <= collision_pf9 then

            transport(cc-collision_pf0)

        end if

    end if

    if key(#KEY_RIGHT) then 'move the lemming right

        tmp=x+3

        cc = collision_check(tmp,y)

        if cc = collision_street then

            x=tmp

            z_dir=lemming_right

            update_z_cnt

        end if

        if cc >= collision_pf0 and cc <= collision_pf9 then

            transport(cc-collision_pf0)

        end if

    end if

end sub

'''

''' get a string from the file

''' a string ends in CR/LF

'''

sub getstring(f as int, s[] as char)

    dim x as char

    dim n as int

    n=0

    while(true)

        get f,,x

        if x<>13 then

            if x=10 then exit while

            s[n] = x

            s[n+1] = 0

            n=n+1

        endif

    wend

end sub

'''

''' load_sprite will find a previously loaded sprite and return its

''' sprite number or load the sprite and add its name to the list

''' and return the new sprites index

'''

function load_sprite(name[] as char)

    dim found as int

    found = false

    for i=0 to current_sprite-1

        if name = sprite_names[i] then

            found = true

            load_sprite = i+1

            exit for

        end if

    next 'i

    if not found then

        load_sprite = current_sprite

        sprite current_sprite, name

        sprite_names[current_sprite-1]=name

        current_sprite = current_sprite + 1

    end if

end function

'''

''' obj_init will allocate a single object and attach it to a sprite

'''

sub obj_init(pfld as int, fname[] as char, x as int, y as int, amt as int, sound[] as char)

    objs[obj_ctr].playfield = pfld

    objs[obj_ctr].x = x mod 160

    objs[obj_ctr].y = y mod 100

    objs[obj_ctr].screen = (x/160)+(y/100)*3

    objs[obj_ctr].mysprite = load_sprite(fname)

    objs[obj_ctr].amt = amt

    objs[obj_ctr].sound = sound

'   sprite command deleted

'   move obj_ctr, 160, 100 'hide sprite

    obj_ctr = obj_ctr+1

end sub

'''

''' init all objects

'''

sub obj_init_all

    print "Loading Sprites..."

    obj_init(0, "money.pic", 32,50,100, "money.mus")

    obj_init(0, "money.pic", 20,140,100, "money.mus")

    obj_init(0, "money.pic", 20,240,100, "money.mus")

    obj_init(0, "money.pic", 224,40,100, "money.mus")

    obj_init(0, "money.pic", 224,140,100, "money.mus")

    obj_init(0, "money.pic", 224,240,100, "money.mus")

    obj_init(0, "money.pic", 432,40,100, "money.mus")

    obj_init(0, "money.pic", 432,110,100, "money.mus")

    obj_init(0, "money.pic", 432,170,100, "money.mus")

    obj_init(0, "money.pic", 432,240,100, "money.mus")

    print "Still Loading Sprites..."

    obj_init(1, "money.pic", 64, 40, 100, "money.mus")

    obj_init(1, "money.pic", 64,140, 100, "money.mus")

    obj_init(1, "money.pic", 64,260, 100, "money.mus")

    obj_init(1, "money.pic",224, 40, 100, "money.mus")

    obj_init(1, "money.pic",224,140, 100, "money.mus")

    obj_init(1, "money.pic",224,260, 100, "money.mus")

    obj_init(1, "money.pic",384, 40, 100, "money.mus")

    obj_init(1, "money.pic",384,140, 100, "money.mus")

    obj_init(1, "money.pic",384,260, 100, "money.mus")

end sub

'''

''' read the playfield file defined by

''' 'field' and set up the sprites and

''' the collision table

'''

sub init_playfield(field as int)

    dim fname[32] as char

    dim s[32] as char

    current_playfield = field-1

    ''' create the filename to read

    sprint fname, "playfield", field, ".dat"

    ''' open the playfield definition file

    open fname for read as 1

    getstring(1, s) 'get the sprite name

    '''

    ''' the playfield sprite has 9 bitmaps

    ''' one for each of the different areas of the

    ''' playfield

    sprite sprite_field, s

    '''

    ''' read the 30 playfield collision rows

    '''

    for i=0 to 29

        getstring(1, collision_table[i])

    next

    '''

    ''' close the playfield.dat file

    '''

    close 1

end sub

'''

''' check collisions

'''

sub check_collisions

    for i=0 to obj_ctr-1

      if objs[i].playfield = current_playfield and objs[i].screen = current_screen and objs[i].x>=0 then

        move objs[i].mysprite, objs[i].x, objs[i].y

        if collision(sprite_lemming, objs[i].mysprite) then

            objs[i].x=-1 ' turn off this sprite

            points = points + objs[i].amt

            music foreground, objs[i].sound

            music foreground, play

            exit for

        end if

      endif

    next

end sub

'''

''' main subroutine

'''

sub mainsub

    init

    init_playfield(1)

    while true

        inline _escape(0); /* check the escape key */

        repaint

        get_keys

        check_collisions

    wend

end sub

'''

''' call the main subroutine

'''

mainsub

New Variables

Current_screen is added, it is the number of the screen currently on display.  

Obj_ctr is the number of objects loaded so far.  This is not to be confused with sprites.  An object (see  Type Obj command) is something that appears on the screen.  It has sound, and position, and point value (amt) and a playfield and screen it belongs to.  But most importantly it has a sprite number (mysprite in the type declaration).

We increased the objs[] array to 40 elements, though we still only use 19. This is the list of objects in the game.  It used to be a 2-dimensional array, but for future purposes makes more sense as a single list.

N_playfields is the number of playfields in our game (2 for us).

Current_sprite is the number of sprites we have loaded into memory.  Sprite_names[] is the list of filenames of sprites we have loaded. 

sub update_file

no changes here.

sub init

We reset the obj_ctr, set the n_playfields to 2 and the current_sprite to 1 (because sprite 0 is the background - Sprite 1 is the first sprite we can load into memory).  A call to Obj_init_all was moved to the bottom of the function because it depends on the current_sprite variable being initialized.

sub repaint

This function got the most attention in this part of the tutorial.  We changed the “field” variable to the global “current_screen” because a) it’s a better name anyway and b) we need it later for collision detection.

The first thing we do is draw the background sprite.

move sprite_field, 0, 0, current_screen 'display the current field

redraw sprite_field

Notice that we called “redraw sprite_field” this stamps the image of the background screen over the entire display.  No need to call CLS because everything is covered up by this operation.  So we save a couple milliseconds by not calling CLS, heh.

Next we iterate over all the objects in the program.  This is different than the last program where we iterated across a 2-dimensional array.  Here we iterate across all objects defined and check to see if each object is a) on the current playfield b) enabled (x>=0) and c) on the current_screen.  If so then we call Move followed by Redraw.  Note that we use whatever “mysprite” points to.  In this program it will always be the money.pic sprite.  Ahhh… reuse at it’s best.

Finally we printxy the points and Move/Redraw the lemming.  And as the last thing to do – Redraw Show to display the buffer to the display screen.

You may notice slightly better gameplay and less flicker in this version of the game.

sub update_z_cnt

No changes here.

function collision_check

No changes here.

sub transport

No Changes here.

sub get_keys

No Changes Here.

sub getstring

no changes here

function load_sprite

This new function is called to load a sprite if it hasn’t already been loaded, and return the value of a sprite if it already has been.  The logic should be pretty easy to follow.

sub obj_init

This subroutine changed a little since I changed the objs[] array to a single dimension.   The obj_ctr points to the current object to create.  We set the playfield to the pfld value passed in.  We compute the x/y/screen for the coordinates passed in and call load_sprite to get the sprite number.  We also took out the sprite command and the move command since they are handled in our new redraw subroutine.

sub obj_init_all

Again, this subroutine changed a little bit because we no longer have the 2-d array of objs.

sub init_playfield

no changes here

sub check_collisions

This subroutine changed substantially because the position of the sprites is no longer stored in the sprite itself but in the objs[] array.  So for each object we must move the sprite into position and call the collision() function to see if they overlap.  If they do overlap we play music and increment points.

sub mainsub

no changes here








































