Playfield Graphics Tutorial

Part 6 – Static Sprites

by Greg Smith

Introduction:

Part-4 demonstrated how to put the collision data into a file. In Part-5 we implemented multiple playfields to extend the game play. Now, in Part-6, we add static (or stationary) sprites. These are objects that the lemming can “pick up” and do not move.

Money & Points

In this example, the lemming has a goal. The goal is to collect all the money on the 2 screens. There is a money sprite at each intersection of the roads in the lemming’s world. Each pile of money is worth 100 dollars and when the lemming collects the money, a sound will be emitted. Naturally, when the money is collected, it must disappear from view, giving the illusion that the lemming removed it from the world-view.

Types

Part-6 introduces a B2C Language feature you may not have encountered before. It is called a “Type”. A Type is a user-supplied collection of variables. In our example, we want to supply each sprite with an x,y coordinate, a playfield it belongs to, a screen within the playfield, a sound, a dollar value, and a sprite number.

Under other conditions we might have to create separate variables for each of these items, and collect them together in arrays – one for each stationary sprite. But with Types we collect them into one large variable… like this:

type obj

 mysprite as int

 x as int

 y as int

 screen as int

 amt as int

 sound[32] as char

end type

Here we have created a new user type called “Obj” (short for object). Mysprite is the name of the entry for the sprite number of the money. X, and y are the entries for the position on the screen to position the sprite. Screen is the number of the screen (0-9) which this sprite belongs on. Amt is the dollar amount for the sprite and sound is the sound to play whenever the sprite is encountered.

To use this practically, we have to create an array of these types. This is done simply:

dim objs[2,10] as obj

Now we have 20 of these objects to use as we wish (an array of 2 x 10). The first dimension is the playfield the sprite belongs on (0,1), the second is for which sprite (0-9).

Accessing the elements is done with the “dot” operator – “.”. You first select which object you want with the array designator [i,j] then use the dot operator to select the Type element. For example, to get the sprite’s sound you would use: objs[1,3].sound

The Program

'''

''' playfield tutorial - part 6

''' stationary sprites

'''

''' by greg smith

'''

'''

''' use c coordinates

'''

OPTION C_COORDS

'''

''' turn off escape processing for speed

'''

OPTION ESCAPE OFF

dim x as int 'position of lemming from 0-480

dim y as int 'position of lemming from 0-300

dim z_dir as int 'which direction of lemming

dim z_cnt as int 'animation image of lemming

dim sprite_field as int 'the sprite number of the playfield sprites

dim sprite_lemming as int 'the sprite number of the lemming sprites

dim lemming_left as int 'index into lemming sprite for going left

dim lemming_right as int 'index into lemming sprite for going right

dim lemming_up as int 'index into lemming sprite for going up

dim lemming_down as int 'index into lemming sprite for going down

dim collision_street as char 'the street's collision value

dim collision_pf0 as char 'playfield 0

dim collision_pf9 as char 'playfield 9

dim collision_table[30,31] as char 'the collision table

dim sprite_ctr as int 'the next sprite to be allocated

dim current_playfield as int 'the current playfield onscreen

dim points as long 'your score

dim n_playfields as int 'the number of playfields

type obj 'the sprite object

 mysprite as int 'my sprite number

 x as int 'x coord on screen (0-159)

 y as int 'y coord on screen (0-99)

 screen as int 'screen within playfield (0-9)

 amt as int 'points for catching this sprite

 sound[32] as char 'the sound to make

end type

dim objs[2,10] as obj 'all the sprites

'''

''' setup object

'''

'''

''' update file - copy file from app to flash

'''

sub update_file(fname[] as char)

 inline File_remove(fname);

 inline _load(fname);

end sub

'''

''' initialization

'''

sub init

 update_file("playfield1.dat") 'get the .dat file into flash

 update_file("playfield2.dat")

 sprite_field = 0 'playfield sprite

 sprite_lemming = 31 'lemming sprite is largest possible sprite - on top

 lemming_left=0 'lemming left image

 lemming_right=5 'lemming right image

 lemming_up=10 'lemming up image

 lemming_down=15 'lemming down image

 '''

 ''' the lemming has 20 bitmaps 5 for each direction

 sprite sprite_lemming, "lemming.pic"

 '''

 ''' the lemming can be anywhere on the playfield from

 ''' x = 0-480

 ''' y = 0-300

 x=240 'center of the playfield

 y=150 'center of the playfield

 z_dir=lemming_right ' lemming faces right

 z_cnt=0 ' animation counter

 '''

 ''' set the collision flags

 '''

 collision_street = \x\

 collision_pf0 = \0\

 collision_pf9 = \9\

 sprite_ctr=1 'initialize the sprite counter

 obj_init_all 'init all objects

 points = 0 'reset points

 n_playfields = 2 'maximum number of playfields

end sub

sub repaint

 dim field_x as int '0,1,2 for the horizontal bitmap

 dim field_y as int '0,1,2 for the vertical bitmap

 dim field as int '0-8 for the bitmap currently visible

 dim lemming_x as int '0-159 for the x coord on the screen

 dim lemming_y as int '0-99 for the y coord on the screen

 dim obj_x as int ' position of the object

 dim obj_y as int ' position of the object

 dim obj_field_x as int

 dim obj_field_y as int

 dim obj_field as int

 dim i as int

 field_x = x / 160 ' compute the horizontal bitmap

 field_y = y / 100 ' compute the vertical bitmap

 field = field_y*3 + field_x ' combine them to compute the bitmap number

 lemming_x = x mod 160 ' compute the lemming's position on the screen

 lemming_y = y mod 100 ' compute the lemming's position on the screen

 move sprite_field, 0, 0, field 'display the current field

 move sprite_lemming, lemming_x, lemming_y, z_dir+z_cnt 'display the lemming

 paper white 'transparent color for the lemming

 ink ltgrey

 '''

 ''' iterate across all sprites and either display or hide them

 '''

 for i=0 to n_playfields-1

 for j=0 to 9 'objects

 '''

 ''' if the sprite is on the current playfield

 ''' and the sprite is not hidden (x=-1) then

 ''' if the sprite is on the current screen then display it

 if i=current_playfield and objs[i,j].x >= 0 then

 if objs[i,j].screen = field then ' is the sprite on-screen?

 move objs[i,j].mysprite, objs[i,j].x, objs[i,j].y

 else

 move objs[i,j].mysprite, 160, 100 'hide sprite

 endif

 else

 move objs[i,j].mysprite, 160, 100 'hide sprite

 endif

 next 'j

 next 'i

 '''

 ''' display points

 '''

 ink white

 font "mini_bold_font"

 printxy 0,0,points

 redraw 'redraw all the sprites

end sub

'''

''' increment the z_cnt variable

'''

sub update_z_cnt

 z_cnt=(z_cnt+1) MOD 5

end sub

'''

''' check for collision against table

'''

function collision_check(x as int, y as int) as char

 collision_check = collision_table[y/10,x/16]

end function

'''

''' transport lemming to another playfield

'''

sub transport(f as int)

 init_playfield(f)

 if f=1 then

 x=240

 y=150

 elseif f=2 then

 x=230

 y=150

 endif

end sub

'''

''' process the keyboard

'''

sub get_keys

 dim tmp as int

 dim cc as int

 if key(#KEY_UP) then 'move the lemming up

 tmp=y-3

 cc = collision_check(x,tmp)

 if cc = collision_street then

 y=tmp

 z_dir=lemming_up

 update_z_cnt

 end if

 if cc >= collision_pf0 and cc <= collision_pf9 then

 transport(cc-collision_pf0)

 end if

 end if

 if key(#KEY_DOWN) then 'move the lemming down

 tmp=y+3

 cc = collision_check(x,tmp)

 if cc = collision_street then

 y=tmp

 z_dir=lemming_down

 update_z_cnt

 end if

 if cc >= collision_pf0 and cc <= collision_pf9 then

 transport(cc-collision_pf0)

 end if

 end if

 if key(#KEY_LEFT) then 'move the lemming left

 tmp=x-3

 cc = collision_check(tmp,y)

 if cc = collision_street then

 x=tmp

 z_dir=lemming_left

 update_z_cnt

 end if

 if cc >= collision_pf0 and cc <= collision_pf9 then

 transport(cc-collision_pf0)

 end if

 end if

 if key(#KEY_RIGHT) then 'move the lemming right

 tmp=x+3

 cc = collision_check(tmp,y)

 if cc = collision_street then

 x=tmp

 z_dir=lemming_right

 update_z_cnt

 end if

 if cc >= collision_pf0 and cc <= collision_pf9 then

 transport(cc-collision_pf0)

 end if

 end if

end sub

'''

''' get a string from the file

''' a string ends in CR/LF

'''

sub getstring(f as int, s[] as char)

 dim x as char

 dim n as int

 n=0

 while(true)

 get f,,x

 if x<>13 then

 if x=10 then exit while

 s[n] = x

 s[n+1] = 0

 n=n+1

 endif

 wend

end sub

sub obj_init(pfld as int, objno as int, fname[] as char, x as int, y as int, amt as int, sound[] as char)

 objs[pfld,objno].x = x mod 160

 objs[pfld,objno].y = y mod 100

 objs[pfld,objno].screen = (x/160)+(y/100)*3

 objs[pfld,objno].mysprite = sprite_ctr

 objs[pfld,objno].amt = amt

 objs[pfld,objno].sound = sound

 sprite sprite_ctr, fname

 move sprite_ctr, 160, 100 'hide sprite

 sprite_ctr = sprite_ctr+1

end sub

'''

''' init all objects

'''

sub obj_init_all

 print "Loading Sprites..."

 obj_init(0, 0, "money.pic", 32,50,100, "money.mus")

 obj_init(0, 1, "money.pic", 20,140,100, "money.mus")

 obj_init(0, 2, "money.pic", 20,240,100, "money.mus")

 obj_init(0, 3, "money.pic", 224,40,100, "money.mus")

 obj_init(0, 4, "money.pic", 224,140,100, "money.mus")

 obj_init(0, 5, "money.pic", 224,240,100, "money.mus")

 obj_init(0, 6, "money.pic", 432,40,100, "money.mus")

 obj_init(0, 7, "money.pic", 432,110,100, "money.mus")

 obj_init(0, 8, "money.pic", 432,170,100, "money.mus")

 obj_init(0, 9, "money.pic", 432,240,100, "money.mus")

 print "Still Loading Sprites..."

 obj_init(1, 0, "money.pic", -1, -1, 100, "money.mus")

 obj_init(1, 1, "money.pic", 64, 40, 100, "money.mus")

 obj_init(1, 2, "money.pic", 64,140, 100, "money.mus")

 obj_init(1, 3, "money.pic", 64,260, 100, "money.mus")

 obj_init(1, 4, "money.pic",224, 40, 100, "money.mus")

 obj_init(1, 5, "money.pic",224,140, 100, "money.mus")

 obj_init(1, 6, "money.pic",224,260, 100, "money.mus")

 obj_init(1, 7, "money.pic",384, 40, 100, "money.mus")

 obj_init(1, 8, "money.pic",384,140, 100, "money.mus")

 obj_init(1, 9, "money.pic",384,260, 100, "money.mus")

end sub

'''

''' read the playfield file defined by

''' 'field' and set up the sprites and

''' the collision table

'''

sub init_playfield(field as int)

 dim fname[32] as char

 dim s[32] as char

 current_playfield = field-1

 ''' create the filename to read

 sprint fname, "playfield", field, ".dat"

 ''' open the playfield definition file

 open fname for read as 1

 getstring(1, s) 'get the sprite name

 '''

 ''' the playfield sprite has 9 bitmaps

 ''' one for each of the different areas of the

 ''' playfield

 sprite sprite_field, s

 '''

 ''' read the 30 playfield collision rows

 '''

 for i=0 to 29

 getstring(1, collision_table[i])

 next

 '''

 ''' close the playfield.dat file

 '''

 close 1

end sub

'''

''' check collisions

'''

sub check_collisions

 dim i as int

 dim j as int

 i = current_playfield

 for j=0 to 9

 if collision(sprite_lemming, objs[i,j].mysprite) then

 objs[i,j].x=-1 ' turn off this sprite

 points = points + objs[i,j].amt

 music foreground, objs[i,j].sound

 music foreground, play

 end if

 next

end sub

'''

''' main subroutine

'''

sub mainsub

 init

 init_playfield(1)

 while true

 inline _escape(0); /* check the escape key */

 repaint

 get_keys

 check_collisions

 wend

end sub

'''

''' call the main subroutine

'''

mainsub

New Variables

Several new variables are introduced including a new data type. Sprite_ctr keeps track of the last sprite we used. Current_playfield is the currently selected playfield. Points is introduced to keep track of the number of points we’ve accumulated. And n_playfields tells us how many playfields we will be playing on.

We’ve already reviewed the use of the Type command and the new type Obj. Objs keeps track of all the objects on the screen.

sub update_file

no changes here.

sub init

sprite_ctr is initialized to 1 and obj_init_all is called to initialize all the sprites. The points variable is initialized to zero. We set the n_playfields to 2.

sub repaint

A large loop was added here to display the dollar-sprites. It is a doubly-nested loop. The ‘I’ variable goes from 0 to n_playfields-1 (0,1). This selects the sprite by playfield. The inner loop (j) goes from 0 to 9 iterating across each sprite in the playfield.

If the sprite is in the current playfield (I=current_playfield) and its not off screen (its x value is not negative – we set the x to –1 when the money is picked up), then if the screen the sprite is on is the currently displayed screen, then position the sprite on-screen. Otherwise the sprite is positioned off-screen (x=160 and y=100).

We also display the points on the screen for the first time. This version of the tutorial will have a “blinking” points value. This is because the points are on-screen for a short period of time before the “redraw” command clobbers it by redrawing all the sprites. We’ll cover this problem in the next tutorial.

sub update_z_cnt

No changes here.

function collision_check

No changes here.

sub transport

No Changes here.

sub get_keys

No Changes Here.

sub getstring

no changes here

sub obj_init

This subroutine will take playfield coordinates for the sprite and initialize the variables of the object type array. The X and Y variables are in “playfield coordinates” which range from (0,0) to (479,299). With them we compute the screen the sprite belongs on and the screen coordinates (0,0) to (159,99). This is the same mathematics used to position the lemming.

The my_sprite element of the object is set to sprite_ctr and sprite_ctr is incremented. The sprite is loaded with the “fname” variable and we initially hide the sprite by moving it to 160,100 (off-screen coords). The sound of the sprite is also stored.

sub obj_init_all

Here we initialize all the dollar-sprites by calling obj_init. Notice that one of the objects is positioned at “-1,-1”. This is because we don’t want it on the screen at all. As I mentioned earlier (in the repaint sub) an x coordinate of –1 indicates the object has been collected.

sub init_playfield

no changes here

sub check_collisions

This subroutine checks for collisions between the lemming and the dollar-sprites. For each sprite in the current playfield we check to see if there is a collision between the lemming and the dollar-sprite. If so, then we increment the points scored, play the music, and effectively “delete” the sprite by setting the X element to –1.

sub mainsub

no changes here

