Playfield Graphics Tutorial

Part 3 – Background Collision Detection

by Greg Smith

Introduction:

In Part-1 we learned how to create a 480x300-pixel playfield and move a car around. In part two, we replaced the car with an animated lemming. While the program is more interesting, it lacks a certain “reality” – we can still walk all over the screen. Part-3 of the Playfield Graphics Tutorial introduces the concept of Background Collision Detection. This is the logic that will constrain our lemming to walk only on the road.

The Collision Table:

As you will recall, the playfield is 480x300 pixels. One way to constrain the lemming to walk only on the road is to look at the color of the pixel the lemming is standing on. If the pixel is white then the lemming can walk there. If the pixel is any other color, then the lemming cannot. This works fine except that the lemming would be bumping into “safe” objects like the dotted line in the road.

A better way would be to have a separate bitmap of all the regions the lemming is allowed to walk on. This bitmap would have a black pixel for regions the lemming is not allowed to walk on, and a white pixel for every region it is allowed to walk on. This would take a bitmap of 480x300 pixels – or 36K of memory. Not very economical.

When you look at the playfield, its clear that large sections are “legal” to walk on. You might be able to represent a rectangular region by a single yes or no value. Thus create a table of legal/illegal regions. This is just what we do with the Collision Table.

The Collision Table is a two-dimensional array of characters. It is 30x30 characters – just 900 bytes. Each element of the array represents a 16x10-pixel region on the playfield. If the array element has an ‘x’ in it, then the lemming is allowed to walk on that part of the playfield. If the array element has a ‘.’ in it, the lemming is not allowed to walk there.

So, if COLLISION_TABLE[0,0] has an ‘x’ in it, then the lemming is allowed to walk on pixels in the rectangle represented by pixels (0,0) through (15,9).

The Collision Table is initialized with a series of assignments. Each one looks like this:

collision_table[4]="..xxxxxxxxxxxxxxxxxxxxxxxxx..." 'y=40-49

Here, each ‘.’ represents a region the lemming is not allowed to walk, and each ‘x’ is a region where it is. There is a new subroutine called “INIT_PLAYFIELD()” which sets up this table.

Some changes have to be made to the GET_KEYS() logic so that whenever we hit a key, we check to make sure the lemming is allowed to move in that direction. If moving in that direction puts the lemming in an illegal region, the move is ignored. And of course, if moving in that direction puts the lemming in a legal region, then the move is performed as usual.

The Program

'''

''' playfield tutorial - part 3

''' Simple Collision Detection

'''

''' by greg smith

'''

'''

''' use c coordinates

'''

OPTION C_COORDS

dim x as int 'position of lemming from 0-480

dim y as int 'position of lemming from 0-300

dim z_dir as int 'which direction of lemming

dim z_cnt as int 'animation image of lemming

dim sprite_field as int 'the sprite number of the playfield sprites

dim sprite_lemming as int 'the sprite number of the lemming sprites

dim lemming_left as int 'index into lemming sprite for going left

dim lemming_right as int 'index into lemming sprite for going right

dim lemming_up as int 'index into lemming sprite for going up

dim lemming_down as int 'index into lemming sprite for going down

dim collision_street as char 'the street's collision value

dim collision_table[30,31] as char 'the collision table

'''

''' initialization

'''

sub init

 sprite_field = 0 'playfield sprite

 sprite_lemming = 31 'lemming sprite is largest possible sprite - on top

 lemming_left=0 'lemming left image

 lemming_right=5 'lemming right image

 lemming_up=10 'lemming up image

 lemming_down=15 'lemming down image

 '''

 ''' the playfield sprite has 9 bitmaps

 ''' one for each of the different areas of the

 ''' playfield

 sprite sprite_field, "playfield.pic"

 '''

 ''' the lemming has 20 bitmaps 5 for each direction

 sprite sprite_lemming, "lemming.pic"

 '''

 ''' the lemming can be anywhere on the playfield from

 ''' x = 0-480

 ''' y = 0-300

 x=240 'center of the playfield

 y=150 'center of the playfield

 z_dir=lemming_right ' lemming faces right

 z_cnt=0 ' animation counter

 '''

 ''' set the collision flags

 '''

 collision_street = \x\

end sub

sub repaint

 dim field_x as int '0,1,2 for the horizontal bitmap

 dim field_y as int '0,1,2 for the vertical bitmap

 dim field as int '0-8 for the bitmap currently visible

 dim lemming_x as int '0-159 for the x coord on the screen

 dim lemming_y as int '0-99 for the y coord on the screen

 field_x = x / 160 ' compute the horizontal bitmap

 field_y = y / 100 ' compute the vertical bitmap

 field = field_y*3 + field_x ' combine them to compute the bitmap number

 lemming_x = x mod 160 ' compute the lemming's position on the screen

 lemming_y = y mod 100 ' compute the lemming's position on the screen

 move sprite_field, 0, 0, field 'display the current field

 move sprite_lemming, lemming_x, lemming_y, z_dir+z_cnt 'display the lemming

 paper white 'transparent color for the lemming

 ink ltgrey

 redraw 'redraw all the sprites

end sub

'''

''' increment the z_cnt variable

'''

sub update_z_cnt

 z_cnt=(z_cnt+1) MOD 5

end sub

'''

''' check for collision against table

'''

function collision_check(x as int, y as int) as char

 collision_check = collision_table[y/10,x/16]

end function

'''

''' process the keyboard

'''

sub get_keys

 dim tmp as int

 if key(#KEY_UP) then 'move the lemming up

 tmp=y-3

 if collision_check(x,tmp) = collision_street then

 y=tmp

 z_dir=lemming_up

 update_z_cnt

 end if

 end if

 if key(#KEY_DOWN) then 'move the lemming down

 tmp=y+3

 if collision_check(x,tmp) = collision_street then

 y=tmp

 z_dir=lemming_down

 update_z_cnt

 end if

 end if

 if key(#KEY_LEFT) then 'move the lemming left

 tmp=x-3

 if collision_check(tmp,y) = collision_street then

 x=tmp

 z_dir=lemming_left

 update_z_cnt

 end if

 end if

 if key(#KEY_RIGHT) then 'move the lemming right

 tmp=x+3

 if collision_check(tmp,y) = collision_street then

 x=tmp

 z_dir=lemming_right

 update_z_cnt

 end if

 end if

end sub

sub init_playfield(field as int)

 collision_table[0]=".............................." 'y=0-9

 collision_table[1]=".............................." 'y=10-19

 collision_table[2]=".............................." 'y=20-29

 collision_table[3]=".............................." 'y=30-39

 collision_table[4]="..xxxxxxxxxxxxxxxxxxxxxxxxx..." 'y=40-49

 collision_table[5]="..x...........x...........x..." 'y=50-59

 collision_table[6]="..x...........x...........x..." 'y=60-69

 collision_table[7]="..x...........x...........x..." 'y=70-79

 collision_table[8]="..x...........x...........x..." 'y=80-89

 collision_table[9]="..x...........x...........x..." 'y=90-99

 collision_table[10]="..x...........x...........x..." 'y=100-109

 collision_table[11]="..x...........x...........x..." 'y=110-119

 collision_table[12]="..x...........x...........x..." 'y=120-129

 collision_table[13]="..x...........x...........x..." 'y=130-139

 collision_table[14]="..xxxxxxxxxxxxxxxxxxxxxxxxx..." 'y=140-149

 collision_table[15]="..x...........x...........x..." 'y=150-159

 collision_table[16]="..x...........x...........x..." 'y=160-169

 collision_table[17]="..x...........x...........x..." 'y=170-179

 collision_table[18]="..x...........x...........x..." 'y=180-189

 collision_table[19]="..x...........x...........x..." 'y=190-199

 collision_table[20]="..x...........x...........x..." 'y=200-209

 collision_table[21]="..x...........x...........x..." 'y=210-219

 collision_table[22]="..x...........x...........x..." 'y=220-229

 collision_table[23]="..x...........x...........x..." 'y=230-239

 collision_table[24]="..xxxxxxxxxxxxxxxxxxxxxxxxx..." 'y=240-249

 collision_table[25]=".............................." 'y=250-259

 collision_table[26]=".............................." 'y=260-269

 collision_table[27]=".............................." 'y=270-279

 collision_table[28]=".............................." 'y=280-289

 collision_table[29]=".............................." 'y=290-299

end sub

'''

''' main subroutine

'''

sub mainsub

 init

 init_playfield(0)

 while true

 repaint

 get_keys

 wend

end sub

'''

''' call the main subroutine

'''

mainsub

The Variables

Two new variables are introduced. The COLLISION_STREET variable is a constant. It is initialized to ‘x’ – the character representing a valid region for the lemming to walk upon. COLLISION_TABLE is a 30x31-character array. Note that while we need only 30x30 characters we allocate an extra byte per row – that is because strings require a null-terminator byte at the end of each string.

dim collision_street as char 'the street's collision value

dim collision_table[30,31] as char 'the collision table

sub init

The only change here is the initialization of the COLLISION_STREET flag.

collision_street = \x\

sub repaint

Amazingly, there were no changes to this function.

sub update_z_cnt

No changes here.

function collision_check

This function checks the collision table for a value and returns it. Notice the division of the Y variable by 10 and the X variable by 16. This divides the entire 480x300-pixel playfield into a 30x30 region. Also notice that the X and Y values are reversed from the normal convention. This is because the Y value is the row selector of the array and the X value is the column selector.

function collision_check(x as int, y as int) as char

 collision_check = collision_table[y/10,x/16]

end function

sub get_keys

Sub get_keys() performs pretty much as it did before, with an important difference. We first compute the location of the lemming and store it in a TMP variable. It is important to store it in TMP because we don’t want to modify the position until we have verified it is a legal move.

Here, in the case of the UP key, we compute TMP=Y-3. Then we call COLLISION_CHECK() to determine if the square we would move to is on the street (COLLISION_STREET). If it is, then we update the Y variable, and do all the things we would normally do when moving (update Z_DIR and Z_CNT).

This same logic applies to moving in the other directions as well.

dim tmp as int

 if key(#KEY_UP) then 'move the lemming up

 tmp=y-3

 if collision_check(x,tmp) = collision_street then

 y=tmp

 z_dir=lemming_up

 update_z_cnt

 end if

 end if

sub init_playfield

INIT_PLAYFIELD is actually going to grow in the near future. Its job right now is to initialize the COLLISION_TABLE. But soon it will be a portal to adding multiple playfields.

The purpose of the COLLISION_TABLE is to have 1 character represent a 16x10-pixel region on the screen. Each character has either a ‘.’ or an ‘x’ to represent where the lemming is allowed to roam. If you look at the code below, you should see a small resemblance to the actual playfield. This is because it is a reduced image of the playfield.

To create this table, I first inspected the bitmaps in Paint Shop Pro V5. With it I was able to determine the actual pixel locations of the road in the playfield. I then divided the x coordinates by 16. That told me what column the ‘x’ would belong in - in the table below. Likewise, I divided the y coordinates by 10 and it told me which row it would belong in.

Frankly, there is a bit of error in this process. If you plan your playfield out in advance you can arrange it so all walkways are on 16x10 boundaries. In the case of our playfield, you can see that the top and bottom roads allow the lemming to walk just over the line. This can easily be fixed by editing the bitmaps in a paint program.

 collision_table[0]=".............................." 'y=0-9

 collision_table[1]=".............................." 'y=10-19

 collision_table[2]=".............................." 'y=20-29

 collision_table[3]=".............................." 'y=30-39

 collision_table[4]="..xxxxxxxxxxxxxxxxxxxxxxxxx..." 'y=40-49

 collision_table[5]="..x...........x...........x..." 'y=50-59

 collision_table[6]="..x...........x...........x..." 'y=60-69

 collision_table[7]="..x...........x...........x..." 'y=70-79

 collision_table[8]="..x...........x...........x..." 'y=80-89

 collision_table[9]="..x...........x...........x..." 'y=90-99

 collision_table[10]="..x...........x...........x..." 'y=100-109

 collision_table[11]="..x...........x...........x..." 'y=110-119

 collision_table[12]="..x...........x...........x..." 'y=120-129

 collision_table[13]="..x...........x...........x..." 'y=130-139

 collision_table[14]="..xxxxxxxxxxxxxxxxxxxxxxxxx..." 'y=140-149

 collision_table[15]="..x...........x...........x..." 'y=150-159

 collision_table[16]="..x...........x...........x..." 'y=160-169

 collision_table[17]="..x...........x...........x..." 'y=170-179

 collision_table[18]="..x...........x...........x..." 'y=180-189

 collision_table[19]="..x...........x...........x..." 'y=190-199

 collision_table[20]="..x...........x...........x..." 'y=200-209

 collision_table[21]="..x...........x...........x..." 'y=210-219

 collision_table[22]="..x...........x...........x..." 'y=220-229

 collision_table[23]="..x...........x...........x..." 'y=230-239

 collision_table[24]="..xxxxxxxxxxxxxxxxxxxxxxxxx..." 'y=240-249

 collision_table[25]=".............................." 'y=250-259

 collision_table[26]=".............................." 'y=260-269

 collision_table[27]=".............................." 'y=270-279

 collision_table[28]=".............................." 'y=280-289

 collision_table[29]=".............................." 'y=290-299

sub mainsub

The mainsub now calls the INIT_PLAYFIELD subroutine.

