Playfield Graphics Tutorial

Part I – Creating the Playfield

by Greg Smith

Introduction:

The graphics behind such games as Zelda and Super Mario Brothers allows for a large playing field where the Cybiko screen is merely a window into the larger world. This type of graphics is complex and memory consuming. This tutorial will describe how to set up a 480x300 pixel playfield with an animated object and is the basis for just such games.

The Playfield:

A playfield is an extended bitmapped screen. In our case it will be 480x300 pixels. This is really 9 160x100 screens in a 3x3 array. The screens are called “screen0.bmp” through “screen8.bmp”. They are combined into a single sprite in the “playfield.bld” file and are called “playfield.pic”.

playfield.pic

Our playfield is a highway system with roads leading from one screen to the next.

As the character (a car in our example) moves from one edge of the screen to the next, the next screen is displayed and the car is displayed in the appropriate place. This is handled automatically and with ease by the “repaint” routine listed below.

The Program

1. OPTION C_COORDS

2. dim x as int 'position of car from 0-480

3. dim y as int 'position of car from 0-300

4. dim z as int 'which image of car

5. dim sprite_field as int 'the sprite number of the playfield sprites

6. dim sprite_car as int 'the sprite number of the car sprites

7. dim car_left as int 'index into car sprite for going left

8. dim car_right as int 'index into car sprite for going right

9. dim car_up as int 'index into car sprite for going up

10. dim car_down as int 'index into car sprite for going down

11. '''

12. ''' initialization

13. '''

14. sub init

15. sprite_field = 0 'playfield sprite

16. sprite_car = 1 'car sprite

17. car_left=0 'car left image

18. car_right=1 'car right image

19. car_up=2 'car up image

20. car_down=3 'car down image

21. '''

22. ''' the playfield sprite has 9 bitmaps

23. ''' one for each of the different areas of the

24. ''' playfield

25. sprite sprite_field, "playfield.pic"

26. '''

27. ''' the car has 4 bitmaps one for each direction

28. sprite sprite_car, "car.pic"

29. '''

30. ''' the car can be anywhere on the playfield from

31. ''' x = 0-480

32. ''' y = 0-300

33. x=240 'center of the playfield

34. y=150 'center of the playfield

35. z=car_right

36. end sub

37. sub repaint

38. dim field_x as int '0,1,2 for the horizontal bitmap

39. dim field_y as int '0,1,2 for the vertical bitmap

40. dim field as int '0-8 for the bitmap currently visible

41. dim car_x as int '0-159 for the x coord on the screen

42. dim car_y as int '0-99 for the y coord on the screen

43. field_x = x / 160 ' compute the horizontal bitmap

44. field_y = y / 100 ' compute the vertical bitmap

45. field = field_y*3 + field_x ' combine them to compute the bitmap number

46. car_x = x mod 160 ' compute the car's position on the screen

47. car_y = y mod 100 ' compute the car's position on the screen

48. move sprite_field, 0, 0, field 'display the current field

49. move sprite_car, car_x, car_y, z 'display the car

50. paper dkgrey 'transparent color for the car

51. redraw 'redraw all the sprites

52. end sub

53. '''

54. ''' process the keyboard

55. '''

56. sub get_keys

57. if key(#KEY_UP) then 'move the car up

58. y=y-3

59. z=car_up

60. end if

61. if key(#KEY_DOWN) then 'move the car down

62. y=y+3

63. z=car_down

64. end if

65. if key(#KEY_LEFT) then 'move the car left

66. x=x-3

67. z=car_left

68. end if

69. if key(#KEY_RIGHT) then 'move the car right

70. x=x+3

71. z=car_right

72. end if

73. end sub

74. '''

75. ''' main subroutine

76. '''

77. sub mainsub

78. init

79. while true

80. repaint

81. get_keys

82. wend

83. end sub

84. '''

85. ''' call the main subroutine

86. '''

87. mainsub

Option C_Coords

The compiler option C_COORDS is used in this program to switch the coordinate system from CyBasic mode ([-80,-50] to [79,49]) into C mode ([0,0] to [159,99]). The zero-based coordinates make the mathematics of computing the screen coordinates easier. This is true for most nearly any video game.

The Variables

In our program we are extending the concept of the sprite position on the screen. The x and y coordinates define our position in the playfield – not our position on the Cybiko screen. So, the X variable can range from 0 (the leftmost position on the playfield) to 479 (the rightmost position on the playfield). Likewise the Y variable will range from 0 (top) to 299 (bottom). The Z variable is used to indicate which image of the car is currently being shown.

dim x as int 'position of car from 0-480

dim y as int 'position of car from 0-300

dim z as int 'which image of car

The remainder of the variables are actually constants used to make the program easier to read. SPRITE_FIELD and SPRITE_CAR are the sprite numbers for the playfield and the car respectively. The variables CAR_LEFT, CAR_RIGHT, CAR_UP, and CAR_DOWN are the indexes into the SPRITE_CAR sprite. These constants are initialized in the INIT function.

dim sprite_field as int 'the sprite number of the playfield sprites

dim sprite_car as int 'the sprite number of the car sprites

dim car_left as int 'index into car sprite for going left

dim car_right as int 'index into car sprite for going right

dim car_up as int 'index into car sprite for going up

dim car_down as int 'index into car sprite for going down

sub init

Here we initialize all the “constants” in the program. Again, the SPRITE_FIELD and SPRITE_CAR are the sprite numbers. Later, when we actually load and move the sprites we will use these variables instead of the literals “0” and “1”. This practice makes the code much easier to read. This is also true of the car’s left, right, up and down images. We use CAR_LEFT, etc. to make the program easier to read.

sprite_field = 0 'playfield sprite

sprite_car = 1 'car sprite

car_left=0 'car left image

car_right=1 'car right image

car_up=2 'car up image

car_down=3 'car down image

The playfield is a set of 9 bitmaps arranged in a 3x3 matrix. The car is a set of 4 bitmaps showing the car pointing left, right, up, and down. Here we load them into memory. Note that the playfield is 4K x 9 screens or 36K. Later we will investigate multiplayfield programs (where keeping all sprites in memory at one time will be impossible).

sprite sprite_field, "playfield.pic"

sprite sprite_car, "car.pic"

As I mentioned earlier, the playfield can be from (0,0) to (479,299). So, we position the car in the middle of the playfield with x=240 and y=150. And we start the car out pointing to the right. Remember all coordinates for x & y are in the playfield coordinate system. Later, in the REPAINT subroutine we will convert the playfield coordinates into Cybiko screen coordinates.

x=240 'center of the playfield

y=150 'center of the playfield

z=car_right

sub repaint

The repaint subroutine does most of the hard work in this program – and still the computations are fairly simple. The local variables FIELD_X and FIELD_Y are the x and y values of the 3x3 playfield matrix. So, the upper left corner of the playfield is 0,0 and the middle segment is 1,1. These values can then be combined to select one of the 9 bitmaps from the playfield sprite.

CAR_X and CAR_Y are the coordinates for the car on the Cybiko screen. Remember that X and Y are the position of the car on the playfield, so we need to convert the playfield coordinates into Cybiko coordinates.

dim field_x as int '0,1,2 for the horizontal bitmap

dim field_y as int '0,1,2 for the vertical bitmap

dim field as int '0-8 for the bitmap currently visible

dim car_x as int '0-159 for the x coord on the screen

dim car_y as int '0-99 for the y coord on the screen

The calculation for finding the playfield screen is simple but uses some mathematical tricks. The first trick is that we are using the position of the car to determine which screen is to be displayed. The second trick is that the playfield screens are exactly the same size as the Cybiko screen. So, it is easy to determine which screen to display by dividing the car’s x coordinate by 160 (which will result in 0, 1, or 2) and the car’s y coordinate by 100 (which will also result in 0, 1, or 2). The final trick is that the playfield screens are stored in a special order from upper left corner to lower right corner (see picture above). So if we multiply the FIELD_Y variable by 3 and add the FIELD_X variable we get the correct playfield screen. Simple, huh?

field_x = x / 160 ' compute the horizontal bitmap

field_y = y / 100 ' compute the vertical bitmap

field = field_y*3 + field_x ' combine them to compute the bitmap number

The car’s position on the screen is very simple to compute too. We just take the remainder of the X variable divided by 160. This is what the MOD function does. Likewise for the Y variable.

car_x = x mod 160 ' compute the car's position on the screen

car_y = y mod 100 ' compute the car's position on the screen

Since the car determines the screen to be displayed, moving the car around the screen makes a natural and easy interface for updating the playfield with the right screen.

Now all we have to do is display the sprites. The SPRITE_FIELD is displayed at 0,0 and the SPRITE_CAR is displayed at car_x and car_y.

move sprite_field, 0, 0, field 'display the current field

move sprite_car, car_x, car_y, z 'display the car

Finally we redraw the display. The “PAPER DKGREY” command sets the transparent color for the car. Otherwise we’d see a dark gray rectangle surrounding the car.

paper dkgrey 'transparent color for the car

redraw 'redraw all the sprites

sub get_keys

There is nothing special here. We check each key and move the car in one of 4 directions. There is plenty missing from this function. Like, what if we go off the left edge of the playfield? There is also nothing that keeps the car on the pavement. These capabilities will be covered in a future tutorial.

if key(#KEY_UP) then 'move the car up

y=y-3

z=car_up

end if

if key(#KEY_DOWN) then 'move the car down

y=y+3

z=car_down

end if

if key(#KEY_LEFT) then 'move the car left

x=x-3

z=car_left

end if

if key(#KEY_RIGHT) then 'move the car right

x=x+3

z=car_right

end if

sub mainsub

The main subrouting is “mainsub”. It calls the initialization routine “init” and the proceeds to loop forever calling “repaint” and “get_keys”.

screen 8

screen 7

screen 6

screen5

screen4

screen 3

screen 2

screen1

screen

0

479

0

299

