
Performance Enhancements

For

B2C

By Greg Smith

Introduction
Before reading this guide you should already have read the “Quick Start Guide” (docs/_QuickStart.doc), the “B2C Tutorial” (tutorials/b2c.doc), and the “Bitmapped Graphics Guide” (docs/Bitmaps.doc). These documents are the foundation for all B2C programs. You should also be very familiar with the “Language Reference Guide” (docs/LanguageReference.doc).

1. There are only a few “tricks” to improving performance in a B2C application. They are

2. KEY(keynumber)

3. OPTION ESCAPE OFF

4. OPTION SHOW OFF

KEY(keynumber)

If you are a seasoned (or even a beginner) CyBasic programmer, then you may be accustomed to checking for a keystroke like this:

If key = 267 then

 Print “You hit Enter”

End if

This is fine if you are just checking a key once in a while, but for most gaming applications you may want to check for a key in a loop, like this:

While key <> #KEY_ENTER

 ‘ wait for the enter key

wend

The problem with this loop is that the “key” function calls the cWinApp_get_message() function. This function never takes less than 1/10 of a second to execute. Which means you will never get more than 10 frames per second, and probably less. To gain maximum performance, you must use the key(n) function (now that’s the word key with a number in parenthesis). It takes as a parameter a key to sample. If the key is pressed down – it returns TRUE (non-zero). And if the key is not pressed, it returns FALSE (0). Try this, instead…

While key(#KEY_ENTER)=FALSE ‘ key is not depressed

 ‘ wait for the enter key

wend

But wait, there’s more! Another problem people fall into is that they call the key (no parens) function too often. Like if you are writing an editor and you want to know what key is currently depressed. The code may look like this:

If key = #KEY_LEFT then x=x-1

If key = #KEY_RIGHT then x=x+1

If key = #KEY_UP then y=y+1

If key = #KEY_DOWN then y=y-1

In this case you can expect major performance problems and possibly even errors (since you are throwing away keystrokes with each call to key). This is a much better solution…

DIM keystroke as char

Keystroke = key ‘called just once

If keystroke = #KEY_LEFT then x=x-1

If keystroke = #KEY_RIGHT then x=x+1

If keystroke = #KEY_UP then y=y+1

If keystroke = #KEY_DOWN then y=y-1

You can even improve upon this using the key(n) function as follows:

If key(#KEY_LEFT) then x=x-1

If key(#KEY_RIGHT) then x=x+1

If key(#KEY_UP) then y=y+1

If key(#KEY_DOWN) then y=y-1
OPTION ESCAPE OFF

The B2C compiler is shipped with certain options in effect. These options are designed to make programming for the novice much easier. One of these features is ESC key detection. At the top of each WHILE or FOR loop an inline call is made to the C function “escape(0)”. This function detects if the ESC key has been pressed, and if it has will display the standard “ESC Pressed -Quit?” dialog. Unfortunately, this function takes about 1/10 of a second to execute. For many programs this is not a problem, but for high performance graphics applications, it’s much too slow. This problem can be compounded by nested loops which call “escape(0)” not just 2x as often but as much as x2.

The fix is to declare “OPTION ESCAPE OFF” at the top of the program. Since this removes escape processing from your program, it will run much faster. However, it also means that your user has no easy way to exit from your program. And to make matters worse, you cannot use KEY(#KEY_ESC) to detect the escape key (CyOS does not allow it for unknown reasons). The only recourse is to use some other key as the exit key. Many people use the SPACE key.

While KEY(#KEY_SPACE)=FALSE

If key(#KEY_LEFT) then x=x-1

If key(#KEY_RIGHT) then x=x+1

If key(#KEY_UP) then y=y+1

If key(#KEY_DOWN) then y=y-1

Move 1,x,y

Redraw

Wend
OPTION SHOW OFF

Normally, when we use any of the graphic functions like printxy, or redraw, or line, the result of the command is immediately apparent on the screen. That is because an internal drawing function called “Show” is executed right away. You see, all graphics commands are actually drawn on a backing display called a buffer. The buffer is drawn on until a “Show” is performed. Then it becomes visible to the user. This technique of buffering graphics is called “double-buffering”.

Because B2C was created for the first time programmer, this Show was performed after each graphics command. The problem is it’s very inefficient. It makes more sense to draw everything in the buffer then do a Show at the end (rather than a Show after every command). This is why so many B2C programs are both slow and display lots of flicker.

To save memory, and have more control over how things are drawn you need to specify “OPTION SHOW OFF” which turns off the “Show” after each command. Since you now have more power over the graphics engine, you also have more responsibility. You must call a “Redraw Show” when you are done drawing the display.

Another benefit of “OPTION SHOW OFF” is that you can reuse the same sprite over and over again. For example, in the “Playfield Graphics Tutorial” (in the playfield directory) there are 19 “money” icons. It would be much more practical to load that icon once and use it over and over again.

To use the same sprite over and over again, we have to first load the sprite into memory. Then we move the sprite to the first location, call the redraw function for that sprite (and that sprite only). Then move the sprite to the next location and redraw it. And so on. Each time we redraw the sprite it acts like a “stamp” imprinting an image of the sprite on the buffered display. Finally, when all the sprites have been imprinted, we call “Redraw Show” and the buffer is copied to the main display for the user to see. Here is a sample :

Sprite 1, “money.pic”

CLS

Move 1, 0, 0 ‘upper left of screen

Redraw 1 ‘ imprint the money on the buffered display

Move 1, 50, 50 ‘middle of screen

Redraw 1 ‘imprint the money on the buffered display

Move 1, 100, 75 ‘lower right of screen

Redraw 1 ‘imprint the money on the buffered display

Redraw Show ‘ show the buffer to the user “Show me the Money!”

For more information, check out Part 7 of the “Playfield Graphics Tutorial” (playfield/part7/playfield7.doc)
_© 2001 The Alcor Group, Inc.

© 2001 The Alcor Group, Inc.
4/4

