SX Arithmetic Routines

0 UBICOM

Application Note 13
November 2000

1.0 Introduction

This application note presents programming techniques
for performing commonly found arithmetic operations,
such as multi-byte binary addition and subtraction, multi-
digit BCD addition and subtraction, multiplication and
division.

2.0 Binary Addition and Subtraction

The default configuration of SX device is to ignore the
carry flag in addition and subtraction operations even the
results of those operations do affect that flag. For multi-
byte arithmetic operations, it is often desirable for the
result of lower bytes to propagate to higher bytes by
means of the carry flag.

To enable the effect of the carry flag, carryx must be
included in the list of device directives which are speci-
fied before the instructions, to make the carry flag an
input to ADD, and SUB instructions.

The carry flag should be set to zero first before any addi-
tion.

The SUB instruction will set the carry flag to zero if there
is an underflow. Therefore, it is necessary for us to set it
to one before any subtraction is performed.

;32 bit addition

The following program segment illustrates 32 bit binary
addition. The 4-byte operandl and the 4-byte operand2
are added together. The result is put back into operand?2.

Note that operandl is located at locations 8, 9, a, b,
hence 10xx binary and operand2 is at locations c, d, e, f
or 11xx binary. Therefore toggling bit 2 of the FSR regis-
ter effectively enable us to switch back and forth among
the two operands. With that in mind, the indirect address-
ing of SX helps in saving code by just using IND as the
register pointed to by FSR.

This routine assumes that the two operands are adjacent
to one another and operandl starts at the 08 location. To
relocate the operands to other locations, make sure that
they are still adjacent to one another, thus occupying a
contiguous 8 bytes, and that operandl is aligned to x0 or
x8. The only change needed in the code will be the end-
ing condition. Note that in the example, we tested bit 4
which will be toggled after the inc. fsr instruction if FSR
was $f, and therefore pointing to the last byte. To make
the routine work with operands located in $10-$17, for
example, would need the ending condition be changed
from sb fsr.4 to sb fsr.3 since the inc fsr instruction will
change the address of last byte from $17 to $18
(%00011000) and set bit 3. Using this technique, we can
save the need to store the count separately in order to
keep track of the number of bytes added.

;entry = 32 bit operandl and 32 bit operand2 in binary form

;exit = operand2 becone oper

add32 clc
nov fsr, #operandl

add_nore clrb fsr.2

nmov Wi nd

seth fsr.2

add ind, W

i nc fsr

sb fsr.4

jmp add_nore

ret

Ubicom™ and the Ubicom logo are trademarks of Ubicom semiconductor, Inc.

ndl + operand2, carry flag=1 for overfl ow from MSB

clear carry, prepare for addition
points to operand 1 first

toggl e back to operand 1

get contents into the work register
points to operand 2

oper and2=oper and2+oper andl

next byte

done? (fsr=%$107?)

not yet

done, return to calling routine

© 2000 Ubicom, Inc. All rights reserved.

www.ubicom.com

SX Arithmetic Routines

AN13

The 32 bit subtraction routine is very similar to addition,
except that we set the carry flag first to indicate no under-
flow. Note that the result is in operand2 and it is
operand2-operandl, not the other way around. When the

;32 bit subtraction
;entry = 32 bit

carry flag is 0 on return, it means that the result is nega-
tive and is therefore in 2's complement form.

operandl and 32 bit operand2 in binary form

nd1l,
prepare for subtraction

carry flag=0 for underflow from VMSB

points to operand 1 first

toggl e back to operand 1

get contents into the work register
points to operand 2

oper and2=oper and2- oper and1l

;exit = operand2 becone operand2-opera
sub32 stc ; set carry,
nmov fsr, #operandl ;
sub_nore clrb fsr.2 ;
nmov Wi nd ;
setb fsr.2 ;
sub ind, W ;
inc fsr ; next byte
sb fsr.4 ; done? (fsr=%$107?)
jmp sub_nore ; not yet
ret ; done, re

3.0 BCD Addition and Subtraction

In applications where calculation result needs to be dis-
played, BCD or binary coded decimal can be much more
easily converted into visual form, as in the case of adding
machine or calculator.

The algorithm here for BCD addition is very similar to
binary addition except for 1 important difference: decimal
adjustment or correction. The need for such operation
will be evident as we examine the follow simple addition:

85+15 9A

Obviously the correction result should be 100 in BCD.
We can see that by adding 6 to the least significant digit
(LSD), in this case, $9A+6=$A0, will correct the LSD.
Finally, by adding a $60 to the whole number (equal to
adding 6 to the most significant digit, MSD), the entire
number is corrected to $00 with a carry of 1, which can
be propagated into the next byte.

By looking at another example: 19+19=32. After the addi-
tion, the digit carry will be set to one, indicating an over-
flow in the LSD. The result then can be corrected by
adding 6 to the LSD, giving us the correct answer of 38.

In general, we will do a correction on LSD of the result if
the digit carry is set or the LSD is greater than 9. The
same is true for the MSD. It will be corrected, i.e., added
with 6, when the carry bit is set or the MSD is greater
than 9.

The tricky part now is how to check if the digit is greater
than 9. A straight implementation will require masking 1
nibble off at a time and do a subtraction. This will require
additional storage if we do not want the operands (and
the result) to be changed. The way it is implemented here
is a bitwise comparison.

turn to calling routine

Let us look at a 4 bit number, if bit number 3 is 0, the
number must be then%0xxx, and therefore ranges from
0-7, hence less than 9. If that's not the case, then we go
on to check bit 2. If it is a one, then we have%11xx, and
the number is definitely bigger than 9, since the minimum
is already%1100 or 12. If bit 2 is a zero, we proceed to
check bit 1. If this bit is a zero, then we have%100x,
which means the number is either 8 or 9, and no correc-
tion is needed. But if bit 1 is an one, then we have
%2101x, which is higher than 9 and correction will be
needed.

This method of detecting whether the digit is greater than
9 or not, is used twice in the code. Once for LSD and
once for MSD. The changes is only the bit number that is
being checked on.

One more point worth noting is the carry bit. After the ini-
tial binary addition, we have to store the carry bit that is
used to propagate the result to higher bytes. The reason
for doing this is simple: the decimal correction process of
adding 6 to the number will clear the carry bit.

Notice also that the ending condition has been changed
to sb fsr.2 instead of sb fsr.4. This is simply because the
code happens to point at operand 1 at that time and it just
saves us code to check if fsr is pointing to the last byte of
operand 1 at location $0b (%1011) or not. The fsr will be
$0c (%1100) after the increment operation and therefore
setting bit 2.

© 2000 Ubicom, Inc. All rights reserved.

www.ubicom.com

AN13 SX Arithmetic Routines
;8 BCD digit addition
;entry = 8 BCD digit operandl and 8 BCD digit operand2 in BCD form
;exit = operand2 becone operand2+operandl, carry flag=1 for overflow from MSB
; operandl will be DESTROYED
badd32 clc ; clear carry, prepare for addition
nmov fsr, #operandl ; points to operand 1 first
badd_nor e
nmov Wi nd ; get contents into the working register
clr i nd
setb fsr.2 ; points to operand 2
add ind, W ; operand2=oper and2+oper andl
clrb fsr.2
ri i nd ; store carry bit which will be altered by decima
; adjustnent (adding 6)
setb fsr.2 ; points back to operand 2
snb status. 1 ; digit carry set? if so, need decimal correction
jmp dcor
j nb i nd. 3, ck_overfl ow i f Oxxx, check MsSD
jb i nd. 2, dcor i f 11xx, it's >9, thus need correction
j nb ind. 1, ck overflow ; 100x, nunber is 8 or 9, no decimal correction
; here if 101x, decimal adjust
dcor clc ; clear effect of previous carry
add i nd, #6 ; decimal correction by adding 6

; finish dealing with | east significant
points to operandl

ck overflow «clrb fsr.2
jb i nd. 0, dcor _nsd
; test if MSD > 9
setb fsr.2
j nb i nd. 7, next _badd
jb i nd. 6, dcor _nsd
j nb i nd. 5, next _badd
;here if 101x, deci mal adj ust
dcor _msd clc
setb fsr.2
add i nd, #$60
next badd clrb fsr.2
snb ind. O
stc
inc fsr
sb fsr.2
jmp badd_nor e
ret

)

stored carry=1, decina

po

if Oxxx,
if 11xx,
i f 100x,

digit,

proceed to MsSD

correct

nts back to operand2

it's <9,
it's >9,
it's <9

add next byte
t hus need correction

clear effect of carry

make sure that
deci mal

it's pointing at the result
correct

points to stored carry
skip if not set
restore stored carry

next

byte

done? (fsr=$0c?)
not yet

done,

return to calling routine

© 2000 Ubicom, Inc. All rights reserved.

www.ubicom.com

SX Arithmetic Routines

AN13

BCD subtraction is very similar to addition except for a
few notes, which are summarized below:

Carry flag is set first before subtraction which means no
borrow;

Decimal correction is done when:

digit carry is O;

least significant digit (LSD) is greater than 9;
carry is 0;

most significant digit (MSD) is greater than 9;

;8 BCD digit subtraction

when the result is negative, it is not suitable for display,
e.g., on 7 segment LEDs. Therefore, an operation
which negates the number is performed by 0-result.
This will enable us to obtain the magnitude of the num-
ber. The no carry condition will keep us reminded of the
fact that it is a negative number. This situation is also
occurring in a binary subtraction, whereas a no carry
condition means the result is in 2's complement form.
This is fine since the 2's complement is not used for
display and it is useful for further computation.

;entry = 8 BCD digit operandl and 8 BCD digit operand2 in BCD form

pexit

; operandl will
cal |

operand2 becone operand2-operandl,

be DESTROYED

bsub32 bs32
snc
jmp bs_done
call neg_result
cal | bs32
bs_done ret
bs32 stc ;
nmov fsr, #operandl ;
bsub_nore
nmov Wi nd ;
clr ind
setb ind.7 ;
setb fsr.2 ;
sub ind,w ;
clrb fsr.2
rl ind ;
setb fsr.2 ;
sb status.1
jmp dec_cor
j nb i nd. 3, ck_underfl ow
jb i nd. 2, dec_cor
j nb i nd. 1, ck_underfl ow

; here if 101x, decinmal adjust
dec_corstc
sub i nd, #6

; finish dealing with | east signif

ck _underflow clrb fsr.2
j nb i nd. 0, dadj _mnsd
; test if MSD > 9
setb fsr.2
j nb i nd. 7, next _bsub
ib i nd. 6, dadj _nsd
j nb i nd. 5, next _bsub

;

;
i

;

)

carry flag=0 for underflow from VsSB
carry flag=1 for positive result

do subtraction

no carry=underfl ow?

carry=1 positive, done

yes, get the magnitude, O-result

keep in mnd that this result is a negative
nunber (carry=0)

set carry, prepare for subtraction
points to operand 1 first

get contents into the working register
set to 1 so that carry=1 after rl instruction

points to operand 2
oper and2=oper and2+oper and1

store carry bit which wll
adj ust nent (addi ng 6)
poi nts back to operand 2

be altered by deci mal

digit carry set? if so, need decinmal correction
i f Oxxx, check MSD

if 11xx, it's >9, thus need correction

100x, nunber is 8 or 9, no decimal correction

clear effect of previous carry
decimal correction by subtracting 6

cant digit, proceed to MSD
points to operandl
stored carry=0, decinal adjust

nts back to operand2

Oxxx, it's <9, add next byte

11xx, it's >9, thus need correction
100x, it's <9

po
if
if
if

© 2000 Ubicom, Inc. All rights reserved.

www.ubicom.com

AN13 SX Arithmetic Routines

;here if 101x, deci mal adj ust

dadj _msd stc ; clear effect of carry
setb fsr.2 ; make sure that it's pointing at the result
sub i nd, #3$60 ; decimal correct
next _bsub clrb fsr.2 ; points to stored carry
sb ind.O ; skip if not set
clc ; restore stored carry
inc fsr ; next byte
sb fsr.2 ; done? (fsr=%$0c?)
jmp bsub_nore ; not yet
ret ; done, return to calling routine

; move the result to operandl and change operand2 to O
; the intention is prepare for O-result or getting the magnitude of a
; negative BCD number which is in conplement form

neg_result nmov fsr, #operand2 ; points to
nov_nor e setb fsr.2 ; operand2
nmov Wi nd ; tenp. storage
clr ind ; clear operand2
clrb fsr.2 ; points to operandl
nmov ind, W ; store result
inc fsr ; next byte
sb fsr.2 ;. done?
jmp nov_nor e ; no
ret ; yes, finish

© 2000 Ubicom, Inc. All rights reserved. -5- www.ubicom.com

SX Arithmetic Routines

AN13

4.0 Binary to BCD Conversion

In many situations, we will find BCD representations very
difficult to deal with, especially when anything more than
addition and subtraction is needed, due to the need for
decimal correction. This problem is alleviated by repre-
senting the numbers internally as binary to facilitate com-
putation and convert it to BCD for display or printing
purposes. In this section, we will discuss how that is
implemented.

There are many different algorithms for binary to BCD
conversions. We will only consider one of the easiest to
implement, that is, shifting the binary number to the left
and let the most significant bit be shifted into a BCD
result. The result is then continuously decimally corrected
to give a right answer.

In the following code segment, we have implemented a
32 bit binary number to 10 digit BCD conversion routine.
With the RL instruction of the SX, the shift operation of
both numbers together is a breeze.

Decimal correction is done here differently than before.
Instead of checking the carry and digit carry, we check
the BCD value before a shift and adjust it properly. This
will save us both code and time. This was not possible
before in our addition and subtraction routines since we
were not doing shift operations.

To see how this is done, let’s look at some examples:

Current value | Binary | Shifted value Shifted value | What the shifted value should
in binary in hex bein BCD
0 0000 0000 0 0
1 0001 0010 2 2
2 0010 0100 4 4
3 0011 0110 6 6
4 0100 1000 8 8
5 0101 1010 A 10
6 0110 1100 C 12
7 0111 1110 E 14
8 1000 1 0000 10 16
9 1001 10010 12 18

From the table, we can see that whenever the current
value is 4 or less, then it is okay. For all digits of 5 and
above, decimal correction is needed. This can be done
by adding 6 to the shifted value or by adding 3 to the cur-
rent value. If we add 3 to all current values and check if
they are greater than 7, all number satisfying this condi-

tion will need decimal correction and we will just keep
that added number, otherwise we fall back to the original
number.

This decimal correction process applies also to the most
significant digit, except we use $30 instead of 3.

32 bit binary to BCD conversion
entry: 32 bit binary nunmber in $10-13

exit:

10 digit BCD nunmber in $14-18

al gorithme shift the bits of binary number into the BCD nunber and

points to the BCD result

cl ear BCD nunber

reached $18?

yes, begin algorithm

no, continue on next byte

; deci mal correct on the way
bi ndec nov count, #32

nmov fsr, #bcd_nunber
clr_bcd clr i nd

snb fsr.3

jmp shift_both

inc fsr

jmp clr_bcd

| oop to clear

© 2000 Ubicom, Inc. All rights reserved.

-6 -

www.ubicom.com

AN13 SX Arithmetic Routines
shift_both nmov fsr, #bi n_nunber ; points to the binary nunmber input
clc ; clear carry, prepare for shifting
shift_Il oop ri i nd ; shift the number I|eft
snb fsr.3 ; reached $18? (finish shifting both
; nunbers)
jmp check_adj ; yes, check if end of everything
inc fsr ; nho, next byte
jmp shift_l oop ; not yet
check_adj decsz count ; end of 32 bit operation?
jmp bcd_adj ; no, do bcd adj
ret
bcd_adj nmov fsr, #bcd_nunber ; points to first byte of the BCD result
bcd_adj _| oop call di gi t _adj ; decimal adj ust
snb fsr.3 ; reached | ast byte?
jmp shift_both ; yes, go to shift both nunber left again
inc fsr ; no, next byte
jmp bcd_adj _| oop ; looping for decimal adjust
di gi t _adj ; consider LSD first
nmov W #3 ;3 will becone 6 on next shift
add Wi nd ; which is the decimal correct factor to be added
mv tenp, W
snb temp. 3 ; > 7? if bit 3 not set, then nust be <=7, no adj.
nmov ind, W ; yes, decimal adjust needed, so store it
: now for the MSD
nov W #$30 : 3 for MBD is $30
add Wi nd ; add for testing
mv tenmp, W
snb temp. 7 D> 77
nmov ind, W ; yes, store it
ret
© 2000 Ubicom, Inc. All rights reserved. -7- www.ubicom.com

SX Arithmetic Routines

AN13

5.0 BCD to Binary Conversion

Input from keyboards can be easily rendered into BCD
form. To let the CPU process the number effectively,
however, binary representation is more desirable.

In this section we will discuss how the BCD to binary con-
version process is implemented. It is basically a reversal
of the binary to BCD conversion process: we shift the
BCD number to the right and let the least significant bit
be shifted into a binary result. The original BCD number
is then continuously decimally corrected to maintain the
BCD format.

In the following code segment, we have implemented a
10 digit BCD number to 32 bit binary number conversion
routine. With the RR instruction of the SX, the shift opera-
tion of both numbers together can be very efficiently
implemented.

Decimal correction is done again differently here since
we are shifting right instead of shifting left.

To derive the algorithm, let’s look at the following table:

Current value | Binary | Shifted value Shifted value What the shifted value
in binary in hex should be in BCD
0 0000 0000 0 0
2 0010 0001 1 1
4 0100 0010 2 2
6 0110 0011 3 3
8 1000 0100 4 4
10 10000 1000 8 5
12 10010 1001 9 6
14 10100 1010 A 7
16 10110 1011 B 8
18 11000 1100 C 9

As we can see, whenever the shifted value has a 1 on bit
3, the result should be subtracted with 3 to make it cor-
rect. And this is the algorithm that we have adopted in the

; 10 digit BCDto 32 bit
; entry: 10 digit
;oexit:

; correct on the way

following code: shift right both humbers and decimally
adjust the BCD number along the way. Note that for the
most significant digit in each BCD number, we subtract
$30 instead of 3 to account for its position.

bi nary conversion

BCD nunber in $14-18

32 bit binary nunber in $10-13

al gorithme shift the bits of BCD nunber into the binary nunber and deci rmal

decbi n nmov count, #32 ;32 bit nunber
nmov fsr, #bi n_nunber; points to the binary result
clr_bin clr i nd ; clear binary number
inc fsr ; no, continue on next byte
snb fsr.2 ; reached $13? (then fsr will be $14 here)
jmp shift_b ; yes, begin algorithm
jmp clr_bin ; loop to clear
shift_b nmov fsr, #bcd_nunber +4 ; points to the |last BCD numnber
clc ; clear carry, prepare for shifting right
shft_| oop rr i nd ; shift the nunber right
dec fsr ; reached $10? (finish shifting both nunbers)
sb fsr.4 : then fsr will be $0f

© 2000 Ubicom, Inc. All rights reserved.

www.ubicom.com

AN13 SX Arithmetic Routines
jmp chk_adj ; yes, check if end of everything
jmp shft_| oop ; not yet
chk_adj decsz count ; end of 32 bit operation?
jmp bd_adj ; no, do bcd adj
ret
bd_adj nov fsr, #bcd_nunber ; points to first byte of the BCD result

bd_adj | oop call dgt _adj

snb fsr.3
jmp shift_b
inc fsr

jmp bd_adj _I| oop

; prepare for next s
; 0000 --> 00000 --
; 0010 --> 0001

; 0100 --> 0010

; 0110 --> 0011

; 1000 --> 0100

;1 0000 --> 1000
;1 0010 --> 1001

)

deci mal adj ust

reached | ast byte?

yes, go to shift both nunber
no, next byte

| oopi ng for decimal adjust

it should be 5, so -3

hift right
>0

2 -->1

4 -->2

6 -->3

8 -->4
10-->8 !!
12-->9 1!

it should be 6, so -3

ri ght again

; in general when the highest bit in anibble is 1, it should be subtracted with 3

dgt _adj ; consider LSD first
sb ind. 3
jmp ck_msd
stc
sub i nd, #3

: now for the MSD
ck_nsd sb ind.7
ret

; yes, do correction
stc

sub i nd, #330

ret

)

check highest bit in LSD, =17
no, check NMSD

prepare for subtraction, no b
yes, adj ust

hi ghest bit in MSD, =17
no

no borrow
this is a 2 word instruction,

orrow

and cannot be ski pped

© 2000 Ubicom, Inc. All rights reserved.

www.ubicom.com

SX Arithmetic Routines

AN13

6.0 Multiplication

Here we will consider both 8 bit by 8 bit and 16 bit by 16
bit multiplications. As we can see, the basic algorithms
are all the same regardless of the number of bits
involved.

Let’s first discuss how the multiplier, multiplicand, and the
result are generally organized.

Multiplicand

Upper product Multiplier (lower product)

The lower part of the result are initially occupied by the
multiplier and the upper part is cleared to zero.

8 bit x 8 bit

mul tiplication (RAM efficient,

To summarize, the following steps are needed to do a
multiplication by software:

Initialize multiplier, multiplicand from calling program;
clear the upper product to zero;
shift right the whole product to the right;

if carry is 1, i.e., the Isb of the multiplier is one, then add
the multiplicand to the upper product;

repeat step 3 and 4 until all bits of the multiplier has
been shifted out

This algorithm is amazingly elegant as we can see in the
next program segment.

As implemented for 8 bit by 8 bit multiplication, this rou-
tine requires only 2 bytes of RAM provided the multipli-
cand is pre-loaded into the W, working register.

2 bytes only)

entry: multiplicand in W nmultiplier at 09

exit product at $0a, 09
; cycles

mul 88 nmov upper _prdt, W 1 store W

nov count, #9 2 set nunber of tinmes to shift

nmov W upper _pr dt 1 restore W(nultiplicand)

clr upper _prdt 1 cl ear upper product

clc 1 clear carry

the following are executed [count] tines

n88l oop rr upper _prdt 1 rotate right the whol e product

rr mul tiplier 1 check Isb

snc 1 skip addition if no carry

add upper _prdt, W 1 add multiplicand to upper product
no_add decsz count 1/2 loop 9 tines to get proper product

jmp n88l oop 3 jmp to rotate the next half of product

ret 3 done. ..

one tine instructions

1+2+1+1+1+3= 9 cycl es

repetitive ones= (1+1+1+1+1+3)9-3+2=71

total worst

A faster implementation can be obtained if we unroll the

fast 8 bit x 8 bit nmultiplication (RAMefficient,

case cycl es=80 cycl es

loop and repeat the code using a macro:

2 bytes only)

entry: multiplicand in W nmultiplier at 09

exit product at $0a, 09

macro to rotate product

right and add

rra MACRO
rr upper _prdt 1 rotate right the whol e product
rr mul tiplier 1 check Isb
snc 1 skip addition if no carry
add upper _prdt, W 1 add multiplicand to upper product
ENDM
cycles
f mul 88 clr upper _prdt 1 cl ear upper product
clc 1 clear carry
the following are executed [count] tines

© 2000 Ubicom, Inc. All rights reserved.

-10- www.ubicom.com

AN13 SX Arithmetic Routines

rra ; call the macro 9 tines
rra
rra
rra
rra
rra
rra
rra
rra

ret 3 done. ..
; one tine instructions = 1+1+3= 5 cycl es
; repetitive ones= (1+1+1+1)9=36
; total worst case cycles=41 cycles

We have saved almost half of the time by using macros The same algorithm has been implemented for 16 bit by
and eliminating the loop control. Notice that in both algo- 16 bit multiplication, which is included as follows:

rithms, 9 shifts are needed to obtain a correct result. The

last shift is used to align the result properly.

16 bit x 16 bit rmultiplication
entry: multiplicand in $09,08, multiplier at $0b, $0a
exit : 32 bit product at $0d, $0c, $b, $a

cycles
mul 1616
nov count, #17 2 set nunber of tinmes to shift
clr upper _prdt 1 cl ear upper product
clr upper _prdt+1 1 hi gher byte of the 16 bit upper product
clc 1 clear carry
the following are executed [count] tines
mL616l oop rr upper _prdt+1 1 rotate right the whol e product
rr upper _prdt 1 | ower byte of the 16 bit upper product
rr nr 16+1 1 hi gh byte of the nultiplier
rr nr 16 1 check | sb
sc 1 skip addition if no carry
jmp no_add 3 no addition since |sb=0
clc 1 clear carry
add upper _prdt, ndl16 ;1 add multiplicand to upper product
add upper _prdt+1, nd16+1 ; 1 add the next 16 bit of multiplicand
no_add decsz count ; 1/2 loop [count] tines to get proper product
jmp mL616l oop 3 jmp to rotate the next half of product
ret ;3 done. ..

one tine instructions = 8 cycles
repetitive ones= 15*16+11+2=253
total worst case cycles=261 cycles

Note that the only difference is the number of bits that we
shift, and more bytes to add and rotate. Other than that, it
is basically the same as a 8 x 8 multiplication. A fast ver-
sion is also available but it is too lengthy to list here.
Please see the program file for details. A saving of 26%
is achieved here by unrolling the loop and reduced the
cycles to 193.

© 2000 Ubicom, Inc. All rights reserved. -11- www.ubicom.com

SX Arithmetic Routines

AN13

7.0 Division

Finally, we are going to tackle the most difficult arithmetic
problem: that of division. If the reader can recall how he
or she was taught how to do division by long hand, then
we are very close to understanding the algorithm.

In division by long hand, we examine the dividend digit by
digit, and see if it is bigger than the divisor. If it is, then we
subtract the divisor or the multiples of it from the dividend
and write down that multiple as a digit in our quotient.
This process is repeated until all digits of the dividend are
exhausted.

This exact process is being implemented in the following
code segment with one difference with our long hand

16 bit by 16 bit division (b/a)
entry: 16 bit b, 16 bit a

division: we are dealing with binary numbers here. So we
modify the algorithm as follows:

initialize the result and remainder register;

shift the dividend bit by bit into the remainder register
(use as a placeholder here);

do a trial subtraction of the partial dividend in the re-
mainder register and the divisor;

if the partial dividend is bigger than the divisor, then we
subtract the divisor from it and record a 1 bit for the
quotient

shift the quotient to left so that we can calculate the

next bit, and repeat step 2 thru 4 till all bits of the divi-
dend is exhausted.

exit result in b, remainder in renainder
; cycles
div1616 nov count, #16 2 no. of time to shift
nmov d, b 2 nove b to nake space
nov d+1, b+1 2 for result
clr b 1 clear the result fields
clr b+1 1 one nore byte
clr rlo 1 cl ear remai nder |ow byte
clr r hi 1 cl ear remmi nder high byte
subt ot al =10
di vl oop clc 1 clear carry before shift
ri d 1 check the dividend
rl d+1 1 bit by bit
ri rlo 1 put it in the renainder for
ri rhi 1 trial subtraction
subt ot al =5
stc 1 prepare for subtraction, no borrow
nov Wa+l 1 do trial subtraction
nov Wrhi-W 1 fromMsSB first
sz 1/2 if two MSB equal, need to check LSB
jmp chk_carry 3 not equal, check which one is bigger
if we are here, then z=1, so c nust be 1 too, since there is no
underflow, so we save a stc instruction
nmov W a 1 equal MsB, check LSB
nmov Wrlo-W 1 whi ch one is bigger?
subt ot al =7
chk_carry sc 1/2 partial dividend >a?
jmp shft_quot 3 no, partial dividend < a, set a 0 into quotient
if we are here, then ¢ nust be 1, again, we save another stc instruction
yes, part. dividend > a, subtract a fromit
sub rlo,a 2 store part. dividend-a into a
sub rhi,a+l 2 2 bytes
stc 1 shift a 1 into quotient
subt ot al =7 worst case
shft_quot ri b 1 store into result
ri b+1 1 16 bit result, thus 2 rotates
© 2000 Ubicom, Inc. All rights reserved. -12 - www.ubicom.com

AN13

SX Arithmetic Routines

: subtotal =6, 4 on | ast count

decsz count 1/ 2
jmp di vl oop ;3
ret 3

; one tine instructions=13
; repetitive ones=(19+6)*15+19+4=398
;. total =411

The fast version of this division algorithm is implemented
by unrolling the loop and repeat all the instructions inside
it. It consumes 336 cycles and therefore saves 18% of
time

8.0 Conclusions

The SX instructions, namely, ADD (add), ADDB (add bit),
SUB (subtract), SUBB (subtract bit), CLC (clear carry),
STC (set carry), RL (rotate left 1 bit), RR (rotate right 1
bit), are very useful in implementing arithmetic routines.
With careful planning and smart algorithm design, all nor-
mal arithmetic functions can be accomplished.

9.0 Modifications and further options

There are plenty of literature on computer arithmetic and
the implementations included in this application note is
not the only way of doing it. It only serves as an example
for the readers and help them to bring their product to the
market faster by using existing routines.

To test the example programs, remember to set the
equate options mentioned in the first sentence of the pro-
gram listing properly (for example, to use BCD routines,
set bcd_test equ 1 and reset all other options to 0). This
will enable you to include only the code you need in a
program.

© 2000 Ubicom, Inc. All rights reserved.

-13-

www.ubicom.com

SX Arithmetic Routines AN13

Lit#: AN13-02
Sales and Tech Support Contact Information

For the latest contact and support information on SX devices, please visit the Ubicom website at www.ubicom.com.
The site contains technical literature, local sales contacts, tech support and many other features.

1330 Charleston Road

Mountain View, CA 94043
. Tel.: (650) 210-1500
o U B | (u m Fax: (650) 210-8715

E-Mail: sales@ubicom.com
Web Site: www.ubicom.com

© 2000 Ubicom, Inc. All rights reserved. -14 - www.ubicom.com

