/YN
SCENIX
Application Note: Push Buttons & Path Switcher

| ntroduction

This application note presents programming techniques for implementing and debouncing from 1-4 push
buttons. This implementation also demonstrates the use of a path switcher (combined with a simple real-time
clock?) to reduce the execution time of each interrupt. The program relies upon the SX's internal interrupt
feature to allow background operation of the clock, buttons, and path_switcher as virtual peripherals.

How the circuit and program work

This firmware module requires no external circuitry, other the push buttons, their pull-up resistors, and an
(optional?) oscillator crystal, making it quite straight forward. The real-time clock peripheral is described
elsewhere (see note 1 below), and will not be discussed here other than that it passes control to the path switcher
virtual peripheral once per millisecond.

The path_switch routine smply looks at the lower 2 bits of the real time clock’s msec count and jumps to
the corresponding push button vector. This allows for only one push button sequence to be run per interrupt and
reduces the overall execution time of the interrupt sequence. This feature of path_switch may be used to select
from amongst any number of code segments (including other than just push button modules) which do not
require execution during each interrupt cycle. For such purposes, it does not even need to be combined with the
real time clock3, which is used here to smplify push button debounce time processing.

The push buttons are wired directly from port B, pins 0-3" to ground, with a 100K pull-up resistor4 also
connected to each port pin, but wired to V.

Within afew> milliseconds of any pushbutton press, the corresponding pbx (where x=0-3) push button
code sequence will register the press. First, the program checks whether it is a new press by looking at the
corresponding pbx_down flag. If it’s not anew press, it isignored. If it is new, the program makes sure the
pbx_down flag is cleared and then begins incrementing the corresponding debouncex counter variable upon
subsequent passes through the interrupt until it detects that the switch contacts have been sufficiently
debounceds®, in which case the pbx_pressed flag is set along with the pbx_down flag.

It this code example, isthe main program’s responsibility, performed by the button_check main loop code
sequence, to scan the pbx_pressed flags to watch for a button press, and to make sure they’ re reset (cleared)
once the appropriate button action has been taken.

If the button actions are short, they may be placed directly in-line in the interrupt code segment for the
corresponding button. This has the attractive benefit of avoiding the need for any main loop handling of the
buttons whatsoever, but also carries the disadvantage of increasing the overall length of the interrupt routine
(which is somewhat compensated for by the path_switcher code module).

1 Described in more detail a separate application note: Virtual Peripheral Real Time Clock

2|f alot of accuracy is needed on the clock, the SX’ sinternal oscillator may be used by adjusting the msec tick count value to the
appropriate count, as described in the above application note.

31f it is not to be combined with the real time clock module, some type of counter must still be maintained to control switching.

* From 1-4 push buttons may be used in this implementation. The user then sets the num_buttons parameter variable accordingly.

4 The value of the pull-up is not very crucial, since the push button port pins are always set as inputs (i.e. high impedance), and the
duration of pressesis usually insignificant in terms of power consumption. Lower or higher resistor values can therefore be used.

5 This value depends on how many push buttons are being used in total. It will range from 0-3 msec, depending.

6 The amount of time any given switch or button takes to debounce is not obvious by any means, and varies with switch type and
press speed and pressure, etc. A good rule of thumb to assure catching rapid sequential presses while avoiding false double triggering
is about 10-20 msec for an average “click” type push button (and most other switches). This value can aways be experimented with.

M odifications and further options

If the need for processor power between timed events is minimal, the three module routine combination
could be modified and set up in conjunction with the watchdog timer instead of the internal RTCC interrupt
where the SX is put in sleep mode between watchdog time-outs. This allows for a tremendous savings in overall

power consumption.

Program Listing

days to this clock if desired

*xxxx% Assenbl er directives

uses: SX28AC, 2 pages of program nenory,

operating in turbo node, with 8-Ileve

The option is available to include seconds,

The code takes advantage of the SX's interna
to operate in the background while the main program | oop is executing

R R Ik I kO R I kR O O

Push Buttons & Path Switcher (with rea

time cl ock)

Lengt h: >=74 bytes (depends upon number of buttons & cl ock type)
Aut hor: Craig Webb

Witten: 98/8/17

This programinplenents a software tine clock virtual periphera
that keeps a 16 bit count of elapsed time in milliseconds.

m nut es, hours and even

RTCC-driven interrupt

R kI kO R I kR R O

8 banks of RAM high speed osc

stack & extended option reg.

DEVI CE pins28, pages?2, banks8, oschs

DEVI CE turbo, st ackx, opti onx
I D ' Buttons
RESET reset_entry

1
1
1
1

C ok kK ok kK program Par anet er s
cl ock_type = 0
;clock_type = 1
;clock_type = 2
num but t ons = 2

; **x*x*%* Program Const ants

;
;
;
i

nt _period = 163
hold_bit = 4- (num_but t ons/ 2)
tick_|o = 80
tick_hi = 195
ﬁspersec_hi 1000/ 256

nspersec_l o 1000- (nrsper sec_hi *256)

1

cxx*xx%x% Port definitions

buttonO

EQU RB. 0
buttonl EQU RB. 1
but t on2 EQU RB. 2
but t on3 EQU RB. 3

1

;****xx Register definitions

1

ORG 8
mai n = $
ienp DS 1
tenp2 DS 1

1

;program | D | abe
:set reset/boot address

EEE R Ik I I I I kR R Program Varl abl es R Sk I O S kO

;16 bit msec count only
include sec, mn, hours
;include day counter

;nunber of buttons (1-4)

;period between interrupts

; debounce period = 2"hol d_bit nsec

: 50000 = nsec instruction count
; for 50MHz, turbo, prescaler=1
;meec per second hi count

;meec per second | o count

:Push button O

:Push button 1

:Push button 2

: Push button 3

;start of programregisters

:mai n bank

;tenporary storage

ORG 010H : bankO vari abl es
cl ock EQU $;cl ock bank
butt ons EQU $; push button bank
time_base_lo DS 1 ;tinme base delay (I ow byte)
ti me_base_hi DS 1 ;tinme base delay (high byte)
nsec_| o DS 1 ;mllisecond count (I ow)
nsec_hi DS 1 ;mllisecond count (high)

I F cl ock_type>0 ;do we want sec, mn, hours?
seconds DS 1 :seconds count
nm nut es DS 1 :m nut es count
hour s DS 1 : hours count

ENDI F

I F cl ock_type>1 ;do we want day count?
days DS 1 ; days count

ENDI F
debounce0 DS 1 ; push button 0 debounce count
debouncel DS 1 ; push button 1 debounce count
debounce?2 DS 1 ; push button 2 debounce count
debounce3 DS 1 ; push button 3 debounce count
pbfl ags DS 1 ; push button status flags
pbO_pressed EQU pbfl ags. 0 ;push button 0 action status
pbl_pressed EQU pbflags. 1 ;push button 1 action status
pb2_pressed EQU pbfl ags. 2 ;push button 2 action status
pb3_pressed EQU pbfl ags. 3 ;push button 3 action status
pbO_down EQU pbfl ags. 4 ; push button 0 down status
pbl_down EQU pbfl ags.5 ;push button 1 down status
pb2_down EQU pbfl ags. 6 ; push button 2 down status
pb3_down EQU pbfl ags. 7 ; push button 3 down status

R Ik I I S kO

Not e: The interrupt
A junp vector is not

to be accessed by th

the lower half of pa
ORG 0
JMWP inter

B O R kO S

: Not e:

; (such as adcs, etc.)
; whi ch may have vary
; exanpl e) .
interrupt

***x%xx \firtual Peripheral

This routine maintains ar
of

I nput vari abl e(s)

Qut put vari abl e(s)

Fl ag(s) affected
Size : 17/39/45 byte

code nust

Care should be taken to see that

Vari abl e(s) affected :

+ 1 if bank select

I NTERRUPT VEC'rm R R I R b I R O R R I

al ways originate at Oh.
needed if there is no programdata that needs
e |READ instruction, or if it can all fit into
ge O with the interrupt routine
;interrupt always at Oh

r upt ;interrupt vector
* INTERRUPT CODE*******************************

any very timng sensitive routines

s (dependi ng upon cl ock type)
needed

code

are placed before other peripherals or code
ng execution rates (like the software clock, for
; begi nning of interrupt
Time C ock
eal -tinme clock count (in nsec) and all ows processing
routines which only need to be run once every mllisecond
ti me_base_lo,time_base_hi, msec_| o, nsec_hi
seconds, m nutes, hours, days
nsec_| o, nsec_hi
seconds, m nutes, hours, days
ti me_base_lo,time_base_hi, msec_| o, nsec_hi
seconds, m nutes, hours, days

:coment ed out

1

;got _tick

:done_cl ock

pRExFRR \jrtual

Ti mi ng (turbo)

[99.9% of time] 14 cycles

[0.1% of tine] 17/39/45 cycles (or |ess)

+ 1 if bank select needed

BANK cl ock ;select clock register bank
MOV W #i nt _peri od ;1 oad period between interrupts
ADD ti me_base_lo, W ;add it to tine base

SNC ;skip ahead if no underfl ow

I NC ti me_base_hi ;yes overflow, adjust high byte
MOV W #ti ck_hi :check for 1 nsec click

MOV Wtine_base_hi-W ;1s high byte above or equal ?
MOV W#tick_lo ;load instr. count |ow byte
SNz ;1f hi byte equal, skip ahead
MOV Wtine_base_| o-W ;check low byte vs. tinme base
SC ;skip ahead if |ow
because of path_swi tcher/pushbutton routines which use nsec count
JMP :done_cl ock 1 f not, end clock routine
JMP done_pbs 1 f not, end clock routine

CLR ti me_base_hi ;Yes, adjust tinme_base reg.'s
SUB time_base_lo,#tick _lo ; leaving tine reminder

INCSZ nsec_lo ; And adj ust nsec count

DEC nsec_hi ; making sure to adjust high

I NC nsec_hi ; byte as necessary

I F cl ock_type>0 :do we want sec, mn, hours?
MOV W #nsper sec_hi ;check for 1000 nmsec (1 sec tick)
MOV W nsec_hi -W ;1s high byte above or equal ?
MOV W #nspersec_| o ;1 oad #1000 | ow byte

SNz ;1f hi byte equal, skip ahead
MOV W nsec_| o-W ;check | ow byte vs. nsec count
SC ;skip ahead if |ow

JMP :done_cl ock 1 f not, end clock routine

I NC seconds ;increment seconds count

CLR nsec_| o :clear nsec counters

CLR nsec_hi ;

MOV W #60 ;60 seconds per minute

MOV W seconds-W ;are we at minute tick yet

JINz :done_cl ock ;if not, junp

I NC nm nut es increment mnutes count

CLR seconds :cl ear seconds count

MOV W #60 : 60 mi nut es/ hour

MOV W m nut es-W ;are we at hour tick yet?

JINZ :done_cl ock ;if not, junp

I NC hour s increment hours count

CLR nm nut es :clear m nutes count

ENDI F :<if> we wanted sec, mn, hours
I F cl ock_type>1 ;do we want to count days?

MOV W #24 ;24 hours per day

MOV W hour s-W ;are we at mdni ght?

JINz :done_cl ock ;if not, junp

I NC days ;increnment days count

CLR hour s :clear hours count

ENDI F ;<if> we wanted day count

Peri pheral: Path Switch

This routine allows alternating execution of nultiple nodul es which don't

need to be run during every interrupt

run faster).
This version runs with the software clock virtual

pass in order to reduce the overall
on any given pass (i.e. it hel ps the code

peri pheral nsec_l o variable

allow ng altenati on between the switch positions once each mllisecond.

; execution tine of the interrupt

1
1
1
1
1
1
1

I nput vari abl e(s)
Qut put vari abl e(s)
Vari abl e(s) affected
Fl ag(s) affected

Si ze :

nsec_l o

Timing (turbo) 8 cycles

path_switch MWV Wnsec_| o

AND W #00000011b

JwP PC+W
: pos0 JwP pb0
: posl JwP pbl
: pos2 JwP pb2
: pos3 Jwp pb3
;****xx \firtual Peripheral: Push Buttons*

1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

1

SETB pbO_pressed
SKI P
:pbO_up CLRB pbO_down
CLR debounce0
:done_pb0
JMWP done_pbs
pbl
I F num but t ons>1
; BANK but t ons
JB buttonl, : pbl_up
JB pbl_down, : done_pbl
I NC debouncel
JNB debouncel. hol d_bi t,
SETB pbl_down

pb0

This routine nonitors any nunmber of pushbuttons,
and flags the main program code as valid presses are received
this routine requires the Tinme C ock virtua

as needed,
*Not e:
pre-processing tiner routine

I nput vari abl e(s)

3 bytes + 1 bytes per junp |location

;load switch selector byte
;keep low 2 bits - 4 position
;junp to switch position pointer
; pushbutton 0 checking routine

; pushbutton 1 checking routine

; pushbutton 2 checking routine

; pushbutton 3 checki ng routine

debounces them properly

peri pheral or simlar

pb0O_down, pb1l_down, debounce0, debouncel

pb2_down, pb3_down, debounce?2, debounce3

Qut put vari abl e(s)
Vari abl e(s) affected
Fl ag(s) affected

pbO_pressed, pbl_pressed, pb2_pressed, pb3_pressed
debounce0, debouncel,
pb0O_down, pb1l_down, pbO_pressed, pbl_pressed

debounce2, debounce3

pb2_down, pb3_down, pb2_pressed, pb3_pressed

Si ze :

Ti mi ng (turbo) 7,10, or

12 bytes per pushbutton + actions (see bel ow*)
+ 1 byte if path switch not
12 cycl es/ pushbutton (unless path sw tch used)

used

+ actions (see bel ow*)

BANK butt ons

JB but t on0, : pb0_up

JB pbO_down, : done_pb0
I NC debounce0

JNB debounce0. hol d_bi t,
SETB pbO_down

**|1f the button activity is short
careful that |ongest possible interrupt

<short code segnent can go here>

**Ot herw se,

:done_pb0

(a few bytes), it
doesn't

;select bank (if not done el sewhere)
; buttonO pressed?
;yes, but is it new press?
; and adj ust debounce count
;wait till long enough
;yes, flag that button is down
can fit here, though be
exceed int_period # of cycles.

use this flag to process button press in nmain code (and don't

forget to reset the flag once the button activity is conplete).

:done_pbl

; and set pb0 action flag
instruction
clear flag
debounce count

; ski p next
; button up,
:and cl ear

;this needed only if path swtch used

;more than 1 push button?

;do bank select (if not done el sewhere)
;buttonl pressed?

;yes, but is it new press?

; and adj ust debounce count

;wait till long enough

;yes, flag that button is down

-k k

Cc

<

-k k

Lot
i pb
1 do

1

pb2

-k k

Cc

1
1
1
-k k
1
1

i pb
1 do

1

pb3

-k k

1
1
1
-k k
1
1

If the button activity is short (a few bytes), it can fit here, though be
areful that |ongest possible interrupt doesn't exceed int_period # of cycles.

short code segnent can go here>

O herwi se, use this flag to process button press in main code (and don't
orget to reset the flag once the button activity is conplete).

SETB pbl_pressed ; and set pbl action flag
SKI P ;skip next instruction
1 up CLRB pbl_down ;button up, clear flag
CLR debouncel : and cl ear debounce count
ne_pbil
JMWP done_pbs ;this needed only if path sw tch used
ENDI F ;more than 1 push button
I F num but t ons>2 ;more than 2 push buttons?
BANK buttons ;do bank select (if not done el sewhere)
JB button2, : pb2_up ; button2 pressed?
JB pb2_down, : done_pb2 ;yes, but is it new press?
I NC debounce?2 ; and adj ust debounce count
JNB debounce2. hol d_bit,:done_pb2 ;wait till |ong enough
SETB pb2_down ;yes, flag that button is down

If the button activity is short (a few bytes), it can fit here, though be
areful that |ongest possible interrupt doesn't exceed int_period # of cycles.

O herwi se, use this flag to process button press in main code (and don't
orget to reset the flag once the button activity is conplete).

SETB pb2_pressed ; and set pb2 action flag
SKI P ;skip next instruction
2_up CLRB pb2_down ;button up, clear flag
CLR debounce?2 : and cl ear debounce count
ne_pb2
JMWP done_pbs ;this needed only if path swtch used
ENDI F ;more than 2 push buttons
I F num but t ons>2 ;more than 3 push buttons?
BANK butt ons ;do bank select (if not done el sewhere)
JB button3, : pb3_up ; button3 pressed?
JB pb3_down, : done_pb3 ;yes, but is it new press?
I NC debounce3 ; and adj ust debounce count
JNB debounce3. hol d_bit,:done_pb3 ;wait till |ong enough
SETB pb3_down ;yes, flag that button is down

If the button activity is short (a few bytes), it can fit here, though be
careful that |ongest possible interrupt doesn't exceed int_period # of cycles.

O herwi se, use this flag to process button press in main code (and don't
forget to reset the flag once the button activity is conplete).

SETB pb3_pressed ; and set pb3 action flag

SKI P ;skip next instruction
:pb3_up CLRB pb3_down ;button up, clear flag

CLR debounce3 : and cl ear debounce count
:done_pb3

ENDI F ;more than 3 push buttons
aone_pbs

1

done_i nt nov w, #-int_period ;interrupt every
retiw ;exit interrupt

i nt_period clocks

;¥**xxx End of interrupt sequence

z************************** RESET ENTRY PONT ER R R R Ik Sk kS
reset _entry

PAGE start ; Set page bits and then

JMWP start ; junp to start of code

B I O I R R Ik O O

;* Main Program Code *

BRI O I R R I kO O

’st art nov I'rb, #6€0001111 :Set RB in/out directions

CLR FSR ;reset all ramstarting at 08h
:zero_ram SB FSR. 4 ;are we on | ow half of bank?
SETB FSR. 3 ;1f so, don't touch regs 0-7
CLR I ND ;clear using indirect addressing
1 INZ FSR, : zero_ram ;repeat until done
MOV 1 OPTI ON, #940011111 ;enable rtcc interrupt
Mai n: | oop

;the foll owi ng code wat ches pb0-pb3 for presses and acts on them
butt on_check

; BANK but t ons ;sel ect pb bank
MOV W pbfl ags ;1 oad pushbutton flags
AND W #00001111b ; keep only 'pressed' flags
Jz :no_press ;junp ahead if not pressed
MOV tenp, W ;store flags tenporarily
CLR tenp2 ;clear 2nd tenp storage reg.

:whi ch_pb I NC tenp2 ;increment 2nd tenp val ue
RR tenp : check whi ch button
SC ;skip ahead if not this one
JMWP :whi ch_pb ; keep | oopi ng
MOV W--tenp2 ;get 2nd tenp value (less 1)
MOV tenp, W ;save it in tenp
MOV W #11110000b ;get clear mask for pbflags
AND pbfl ags, W ;clear all "pressed" flags
MOV Wtenp ;get which button pressed
JMP PC+W :Go do PB routines

: pb0 JWP pbO_acti on ;do pbO action

:pbl JWP pbl_action ;do pbl action

: pb2 JWP pb2_acti on ;do pb2 action

: pb3 JMWP pb3_action ;do pb3 action

i no_press
<mai n program code goes here>

’ JMWP Mai n: | oop ;back to main | oop
i)bO_act i on

1

: <pb0 action here>
’ JMWP Mai n: | oop
i)bl_act i on

1

: <pbl action here>

JMWP Mai n: | oop

bb2_action

: <pb2 action here>
’ JMWP Mai n: | oop
bbS_action

: <pb3 action here>
JMWP Mai n: | oop
z***************

’ END ; End of program code

