
© 2000 Ubicom, Inc. All rights reserved. - 1 -

Ubicom™ and the Ubicom logo are trademarks of Ubicom, Inc.
All other trademarks mentioned in this document are property of their respec-
tive componies.
Application Note 38
September 2000
Asynchronous Transmitter & Receiver
(UART) Virtual Peripheral
Implementation
1.0 Introduction
The UART Virtual peripheral uses the SX communica-
tions controller to provide asynchronous data communi-
cation through the RS-232 interface. This Virtual
Peripheral makes the SX device act as Universal Asyn-
chronous Transmitter and Receiver and communicate
with any PC directly. The Virtual Peripheral has been
developed using the SX Evaluation Board and has been
tested using the SX-Key of Parallax Inc. and SX-IDE of
Advanced Transdata Inc.

Unlike other MCUs that add functions in the form of addi-
tional silicon, the SX Series uses its industry-leading per-
formance to execute functions as software modules, or
Virtual Peripheral. These are loaded into a high-speed
on-chip flash/EEPROM program memory and executed
as required. In addition, a set of on-chip hardware
Peripheral modules is available to perform operations
that cannot readily be done in software, such as compar-
ators, timers and oscillators.

2.0 Description of UART Virtual Peripheral
The data transmission is done at a pre determined baud
rate this is done by over sampling the data to be transmit-
ted. A divide ratio is calculated by dividing this sampling
rate by the required baud rate. The data is then inverted
before it is sent at RS-232 level through the line driver.

2.1 Program Description
A multithreading concept is used to realize the UART Vir-
tual Peripheral module. Whenever an interrupt occurs the
program jumps into the interrupt service routine, which
contains the interrupt multitasker. The multitasker has a
number of threads normally within 24. In the UART Vir-
tual Peripheral, 16 threads are used at every occurrence
of the interrupt. The interrupt control jumps to one of the
threads. The Virtual Peripheral modules are inserted into
one of the threads. The UART module is contained within
isrThread1. This thread is executed every 4th interrupt.
Therefore the UART routine executes once for the occur-
rence of 4 interrupts. This technique enables the user to
embed other Virtual Peripheral modules within the
remaining threads.

2.2 Interrupt Service Routine Flowchart

Figure 2-1. Interrupt Service Routine Flowchart

 START

Decrement Txdivide
value and check if it

is 0

Transmit 1 Data bit
Decrement TX

count

Check for any bit
to be received

Receive bit

 END

NO

YES

NO

YES
www.ubicom.com

AN38 Asynchronous Transmitter & Receiver (UART) Virtual Peripheral Implementation
3.0 UART Virtual Peripheral Building
Blocks
There are four sections associated with the of the UART
Virtual Peripheral. Each section can be inserted in a main
source code at appropriate locations to meet the require-
ment of realizing the UART Virtual Peripheral.

• Equates Section
• Bank Section
• Initialization Section
• Interrupt Section

3.1 Equates Section
This section gives the equates of the UART Virtual
Peripheral module and it also defines the output pins for
the UART Virtual Peripheral. The value of UARTDivide,
UARTStDelay and pin declarations are made here.
UARTdivide = UARTfs/(UARTbaud * Num)
UARTStDelay = UARTDivide + (UARTDivide/2) + 1

Where Num is the number of times the ISR thread in
which the Virtual Peripheral is present is called in the
Interrupt service routine multitasker (ISR multiplexer
which is 4 in our case).

The pins on which the input and output data are received
and sent are defined in this section. Port RA is used for
the external interface.

The Pins are configured as follows:

• Ra.0 rs232RTSpin
• Ra.1 rs232CTSpin
• Ra.2 rs232Rxpin
• Ra.3 rs232Txpin

intPeriod = 217

UARTfs = 230400

Num = 4

IFDEF baud1200

UARTBaud = 1200

ENDIF

IFDEF baud2400

UARTBaud = 2400

ENDIF

IFDEF baud4800

UARTBaud = 4800

ENDIF

IFDEF baud9600

UARTBaud = 9600

ENDIF

IFDEF baud1920

UARTBaud = 19200

ENDIF

IFDEF baud5760

UARTBaud = 57600

ENDIF
© 2000 Ubicom, Inc. All rights reserved. - 2 - www.ubicom.com

Asynchronous Transmitter & Receiver (UART) Virtual Peripheral Implementation AN38
3.2 Bank Section
This section describes the use of the banks in the UART
Virtual Peripheral. The bank used in the UART Virtual
Peripheral module (BANK 1) should be same in the main
source template, if used with other Virtual Peripheral
modules.

Inside this bank we have different banks for RS232TX,
RS232RX and Multiplex just for clarity. Though there are
three banks, as all the three are declared within bank1, it
will point to bank 1 whenever any of these three banks
are accessed.

Org bank1_org

; VP: VP Begin RS232 Transmit

rs232TxBank = $;UART bank

rs232Txhigh ds 1 ;hi byte to transmit

rs232Txlow ds 1 ;low byte to transmit

rs232Txcount ds 1 ;number of bits sent

rs232Txdivide ds 1 ;x’mit timing (/16) counter

Rs232Txflag ds 1

;VP: END

;VP : VP Begin RS232 Receive

rs232RxBank = $

rs232Rxcount ds 1 ;number of bits received

rs232Rxdivide ds 1 ;receive timing counter

rs232Rxbyte ds 1 ;buffer for incoming byte

rs232byte ds 1 ;used by serial routines

hex ds 1

;VP: END

;VP : VP Begin Multiplexer

MultiplexBank = $

isrMultiplex ds 1

;VP: END
© 2000 Ubicom, Inc. All rights reserved. - 3 - www.ubicom.com

AN38 Asynchronous Transmitter & Receiver (UART) Virtual Peripheral Implementation
3.3 Initialization Section
This provides the initialization part of the UART Virtual
Peripheral. This has to be included before the main loop
starts with the initialization of all other ports and registers.

_bank rs232TxBank ;select rs232 bank

mov w,#UART1divide ;load Txdivide

;with UART baud

;rate

mov rs232TXdivide,w

This initialization is done to send the data at the required
baud rate. The value of UART divide symbolizes the
number of times the interrupt has to be serviced before a
bit is transmitted. For example if we are transmitting data
at the rate of 9600bps, the value of UART divide is 6, this
means that every one bit should be transmitted once in 6
times of the occurrence of thread1.

3.4 Interrupt Section
It provides the interrupt service routine for the UART Vir-
tual Peripheral. The flow of the interrupt service routine is
demonsrated by the flowchart in Figure 4-1.

The interrupt service routine of the with a "retiw" value of
-217 at an oscillator frequency of 50MHz runs every
4.32us.

The algorithm of the Interrupt is as follows:

• An interrupt occurs whenever the RTCC register rolls
from FF to 00 value.

• On the Occurrence of an Interrupt, the control flows to
the interrupt routine written at 00

• location
• In the ISR the value of "isrmultiplexer" register is incre-

mented, initially it is 0

• This is added to the value of the program counter to
jump to the respective ISR thread.

• In the "isrThread1" the UART Virtual Peripheral is in-
serted so every time the control goes to Isrthread1 the
Virtual Peripheral is executed.

• The value of TXdivide is checked for zero, to confirm
whether a bit has to be transmitted in this cycle.

• The Value of UARTdivide is loaded to Txdivide.
• The value of TX count is checked to confirm the pres-

ence of data to be transmitted
• If the value is not zero, there is data to be transmitted,

then the transmit routine is executed.
• The data stored in Txhigh register is pushed to w reg-

ister.
• The MSB of the TX low register is set, this is the start

bit. A total of ten bits are transmitted which consists of
1 start bit+8 databits + I stop bit. The receiving side ter-
minal has to be configured for these values with the
baud rate required for efficient working of the UART

• The bits are rotated to the right and fed to the TX low
register.

• The bit 6 of the TX low register is transmitted on the TX
line.

A Similar procedure is adopted to receive the incoming
bytes.
© 2000 Ubicom, Inc. All rights reserved. - 4 - www.ubicom.com

Asynchronous Transmitter & Receiver (UART) Virtual Peripheral Implementation AN38
The code of the interrupt service routine is given below:

;***

org INTERRUPT_ORG ; First location in program memory.

;***

;***

;------------------------Interrupt Service Routine------------------------------

;***

; Note: The interrupt code must always originate at address $0,

; Interrupt Frequency = (Cycle Frequency / -(retiw value)) For example:

; With a retiw value of -217 ;and an oscillator frequency of 50MHz, this

; code runs every 4.32us.

;***

org $0

;***

;------------------------VP:VP Multitasker--------------------------------------

;***

; Virtual Peripheral Multitasker up to 16 individual threads, each running at

; the(interrupt rate/16).

; Input variable(s):isrmultiplex : variable used to choose threads

; Output variable(s): None executes the next thread

; Variable(s) affected: isr_multiplex

; Flag(s) affected: None

; Program Cycles: 9 cycles (turbo mode)

;***

 _bank Multiplexbank ;

inc isrMultiplex ; toggle interrupt rate

mov w,isrMultiplex ;

;***

; The code between the tableStart and tableEnd statements MUST be completely

; within the first half of a page. The routines it is jumping to must be in the

; same page as this table.

;***

tableStart ; Start all tables with this macro

 jmp pc+w ;

 jmp isrThread1 ;

 jmp isrThread2 ;

 jmp isrThread3 ;

 jmp isrThread4 ;

 jmp isrThread1 ;

 jmp isrThread5 ;

 jmp isrThread6 ;

 jmp isrThread7 ;

 jmp isrThread1 ;

 jmp isrThread8 ;

 jmp isrThread9 ;

 jmp isrThread10 ;

 jmp isrThread1 ;

 jmp isrThread11 ;

 jmp isrThread12 ;

 jmp isrThread13 ;

tableEnd ; End all tables with this macro.
© 2000 Ubicom, Inc. All rights reserved. - 5 - www.ubicom.com

AN38 Asynchronous Transmitter & Receiver (UART) Virtual Peripheral Implementation
;***

; VP: VP Multitasker

; ISR TASKS

;***

IsrThread1 ; Serviced at ISR rate/4

;---------------------------VP: RS232 Transmit----------------------------------

;***;

; Virtual Peripheral: Universal Asynchronous Receiver Transmitter (UART) These routines

; send and receive RS232 serial data, and are currently; configured (though modifications

; can be made for the popular "No parity-checking, 8 data bit, 1 stop bit" (N,8,1) data format.

; RECEIVING: The rs232Rxflag is set high whenever a valid byte of data has been received

; and it is the calling routine’s responsibility to reset this flag once the incoming

; data has been collected.

; TRANSMITTING : The transmit routine requires the data to be inverted and loaded

; (rs232Txhigh+rs232Txlow) register pair (with the inverted 8 data bits stored in rs232Txhigh

; and rs232Txlow bit 7 set high to act as a start bit). Then the number of bits ready for

; transmission (10=1 ;start + 8 data + 1 stop) must be loaded into the rs232Txcount register.

; As soon as this latter is ;done, the transmit routine immediately begins sending the data.

; This routine has a varying ;execution rate and therefore should always be placed after any

; timing-critical virtual peripherals ;such as timers, adcs, pwms, etc. Note:

;

; The transmit and receive routines are independent and either may be removed, if not needed,

; to ;reduce execution time and memory usage, as long as the initial "BANK serial" (common)

; instruction is kept.

; Input variable(s) : rs232Txlow (only high bit used), rs232Txhigh, rs232Txcount .

; output variable(s) : rs232Rxflag, rs232Rxbyte

; variable(s) affected : rs232Txdivide, rs232Rxdivide, rs232Rxcount

; Flag(s) affected : rs232Rxflag

; Program cycles: 17 worst case

; Variable Length? Yes.

;***

rs232Transmit

_bank rs232TxBank ;2 switch to serial register bank

decsz rs232Txdivide ;1 only execute the transmit routine

jmp :rs232TxOut ;1

mov w,#UARTdivide ;1 load UART baud rate (50MHz)

mov rs232Txdivide,w ;1

test rs232Txcount ;1 are we sending?

snz ;1

jmp :rs232TxOut ;1

:txbit clc ;1 yes, ready stop bit

rr rs232Txhigh ;1 and shift to next bit

rr rs232Txlow ;1

dec rs232Txcount ;1 decrement bit counter

snb rs232Txlow.6 ;1 output next bit

clrb rs232TxPin ;1

sb rs232Txlow.6 ;1

setb rs232TxPin ;1,17

:rs232TxOut
© 2000 Ubicom, Inc. All rights reserved. - 6 - www.ubicom.com

Asynchronous Transmitter & Receiver (UART) Virtual Peripheral Implementation AN38
;---------------------------VP: RS232 Receive-------------------------------------

;***

; Virtual Peripheral: Universal Asynchronous Receiver Transmitter (UART)

; These routines send and receive RS232 serial data, and are currently configured

; (though modifications can be made) for the popular "No parity-checking, 8 data bit,

; 1 stop bit" (N,8,1) data ;format. RECEIVING: The rx_flag is set high whenever a valid

; byte of data has been received and it ;is the calling routine’s responsibility to reset

; this flag once the incoming data has been collected.

; Output variable(s) : rx_flag, rx_byte

; Variable(s) affected : tx_divide, rx_divide, rx_count

; Flag(s) affected : rx_flag

; Program cycles: 23 worst case

; Variable Length? Yes.

;***

rs232Receive

_bank rs232RxBank ;2

sb rs232RxPin ;1 get current rx bit

clc ;1

snb rs232RxPin ;1

stc ;1

test rs232Rxcount ;1 currently receiving byte?

sz ;1

jmp :rxbit ;1 if so, jump ahead

mov w,#9 ;1 in case start, ready 9 bits

sc ;1 skip ahead if not start bit

mov rs232Rxcount,w ;1 it is, so renew bit count

mov w,#UART1startdelay ;1 ready 1.5 bit periods (50MHz)

mov rs232Rxdivide,w ;1

:rxbit decsz rs232Rxdivide ;1 middle of next bit?

 jmp :rs232RxOut ;1

mov w,#UARTdivide ;1 yes, ready 1 bit period (50MHz)

 mov rs232Rxdivide,w ;1

dec rs232Rxcount ;1 last bit?

sz ;1 if not?

rr rs232Rxbyte ;1 then save bit

snz ;1 if so,

setb rs232RxFlag ;1,23 then set flag

:rs232RxOut

jmp isrOut ;7 cycles until mainline program resumes
;execution

isrThread2 ; Serviced at ISR rate/16

jmp isrOut ; 7 cycles until mainline program resumes
; execution

isrThread3 ; Serviced at ISR rate/16

jmp isrOut ; 7 cycles until mainline program resumes
; execution

isrThread4 ; Serviced at ISR rate/16

jmp isrOut ; 7 cycles until mainline program resumes
; execution

isrThread5 ; Serviced at ISR rate/16

jmp isrOut ; 7 cycles until mainline program resumes
; execution
© 2000 Ubicom, Inc. All rights reserved. - 7 - www.ubicom.com

AN38 Asynchronous Transmitter & Receiver (UART) Virtual Peripheral Implementation
isrThread6 ; Serviced at ISR rate/16

jmp isrOut ; 7 cycles until mainline program resumes
; execution

isrThread7 ; Serviced at ISR rate/16

jmp isrOut ; 7 cycles until mainline program resumes
; execution

isrThread8 ; Serviced at ISR rate/16

jmp isrOut ; 7 cycles until mainline program resumes
; execution

isrThread9 ; Serviced at ISR rate/16

jmp isrOut ; 7 cycles until mainline program resumes
; execution

isrThread10 ; Serviced at ISR rate/16

jmp isrOut ; 7 cycles until mainline program resumes
; execution

isrThread11 ; Serviced at ISR rate/16

jmp isrOut ; 7 cycles until mainline program resumes
; execution

isrThread12 ; Serviced at ISR rate/16

jmp isrOut ; 7 cycles until mainline program resumes
; execution

isrThread13 ; Serviced at ISR rate/16

; This thread must reload the isrMultiplex register reload isrMultiplex so isrThread1 will be

; run on the next interrupt. This thread must reload the isrMultiplex register since it is

; the last one to run in a rotation.

_bank Multiplexbank

mov isrMultiplex,#255

 jmp isrOut ; 7 cycles until mainline program resumes
; execution

isrOut

; Set Interrupt Rate

Isrend

; refresh RTCC on return (RTCC = 217-no of instructions executed in the ISR)

mov w,# -intperiod

retiw ;return from the interrupt

; End of the Interrupt Service Routine

© 2000 Ubicom, Inc. All rights reserved. - 8 - www.ubicom.com

Asynchronous Transmitter & Receiver (UART) Virtual Peripheral Implementation AN38
4.0 Baud Rate Generation Methodology
and Timing
To understand the method used, for generating the
required baud rate let us take an example.

Let us consider data has to be transmitted at the rate of
57600bps and the sampling frequency is 230.4KHz

Time taken for the transmission of 1 bit of data = 1/57600
sec

As data is sampled at a frequency of 230.4KHz, time
taken to send I bit = 1/230400 sec

If data is sent at the sample rate the it will be transmitted
at a rate much faster than that required and hence will
result in a baud rate mismatch. To avoid this mismatch
we introduce a delay factor that is a ratio of the sampling
frequency and baud rate.

Hence the divide ratio UARTdivide for the above exam-
ple will be = (230400/57600) = 4

This divide ratio implies that if a bit of data is transmitted
once in 4 times the occurrence of the interrupt, the baud
rate matching will be taken care.

When the concept of ISR thread is used it is necessary
that the value of UARTdivide is further divide by a value
equal to the number of times the thread servicing this
particular interrupt is called in the ISR Multitasker.

As in the interrupt routine Mentioned above if the thread
1 id being called 4 times in the Interrupt Multitasker
hence the value of UART divide is further divided by 4 to
get a resulting value of 1.

So the formula for UART divide will be:

UARTdivide = UARTfs/(UARTbaudrate*number of times
the ISR is called in the Multitasker)

This gives a value of UARTdivide as 1. Hence this value
will take care for the transmission of data at the required
baudrate.

In the receiving mode the generation of baud rate is in
the same way as explained above.

But a constant called UARTstartdelay is introduced which
is equal to 1.5 times the bit length is just to take care for
the start bit as it is not used.

4.1 CIRCUIT DESIGN PROCEDURE
The simplest version of the circuit requires two SX pins
for Tx & Rx (if handshake is to be used, additional port
lines will be required). The circuit interface is quite simple
which involves only a driver for driving the signals. As we
intend to use the RS-232 level of communication any TTL
to RS232 converter can be used. The TX and RX lines
are to be given to the driver directly which takes care of
the level conversion. The same concept can be used to
extend and configure 2 independent UART’s or Multiple
UART’s.
© 2000 Ubicom, Inc. All rights reserved. - 9 - www.ubicom.com

© 2000 Ubicom, Inc. All rights reserved. - 10 - www.ubicom.com

Sales and Tech Support Contact Information

For the latest contact and support information on SX devices, please visit the Ubicom website at www.ubicom.com.
The site contains technical literature, local sales contacts, tech support and many other features.

1330 Charleston Road
Mountain View, CA 94043

Contact: Sales@ubicom.com
http://www.ubicom.com

Tel.: (650) 210-1500
Fax: (650) 210-8715

AN38 Asynchronous Transmitter & Receiver (UART) Virtual Peripheral Implementation

Lit #: AN38-02

